

Solutions Together

Hunter Galvanizing – Environmental Noise Report - November 2024

Report No.:	1241-0
Job No.:	1241
Date:	29 November 2024
Report To:	Hunter Galvanizing Operations Pty Ltd
Attention Of:	Seth Allwood
Prepared By:	Port Hunter Environmental (pHE)
Approved By:	Sharn Crosdale

Port Hunter Environmental (pHE)

5/11 McIntosh Drive, Mayfield West NSW 2304, Ph 02 4967 7880,

www.phenviro.com.au

Disclaimer:

This report has been commissioned by and prepared for the exclusive use of the client. This report shall not be reproduced except in full, without the written approval of pHE. pHE exercises all reasonable skill and care in the provision of its professional services, however pHE accepts no responsibility for any matters arising from the misapplication or misinterpretation of the contents of its reports.

Where site inspections, testing or fieldwork have taken place, the report is based on the information made available by the client or their nominees during the visit. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to pHE is both complete and accurate. It is further assumed that normal activities were being undertaken at the site on the day of the site visit(s), unless explicitly stated otherwise.

Contents

1.0	Inti	roduction	1			
1.	1	Site	1			
1.	2	Criteria	1			
2.0	Me	thodology	2			
2.	1	Hunter Galvanizing Site Noise Monitoring	2			
2.	2	Calculation of noise	2			
2.	3	Instrumentation	3			
3.0	Мо	nitoring	3			
3.	3.1 Meteorological Conditions					
3.	2	Noise Descriptors	4			
3.	3	Environment Protection Licence Noise Limits	4			
4.0	Res	sults	5			
5.0	Dis	cussion	6			
6.0	Cor	nclusion	7			
	Арр	endix 1 - Environmental Noise TerminologyA	1			
	Appendix 2 - Noise Reports					
	Арр	endix 3 - Calibration CertificatesA	3			

List of Tables

Table 1 Direct Environmental Noise Measured Locations	2
Table 2 Meteorological Conditions	4
Table 3 Noise Descriptors	4
Table 4 EPL Noise limits (EPL ID: 12014)	4
Table 5 Hunter Galvanising Environmental Noise Results, 26 November 2024	5
Table 6 Attenuation Calculated Hunter Galvanizing Environmental Noise Results, 26 November 2024	5

List of Figures

Figure 1 Site Monitoring Locations	. 2

1.0 Introduction

pHE was appointed by Hunter Galvanizing Pty Ltd (hereon referred to as HG) to carry out environmental noise monitoring. The purpose of the monitoring was to evaluate compliance with the conditions of Environment Protection Licence (EPL) No. 12014.

Testing was conducted on 26 November 2024 to investigate environmental noise at two (2) locations during Day (7am to 6pm), Evening (6pm to 10pm) and Night (10pm to 7am) time periods as described in section L3.1 of EPL 12014.

Environmental noise terminology used in this report is defined in **Appendix 1**.

1.1 Site

The HG site is located in an industrial zoned area at 13 Old Punt Road Tomago NSW 2322, and is bounded by a precast concrete facility to the South, electrical engineering workshops to the West and North West, as well as a steel house framing fabrication facility to the North.

Site noise is generally characterised as intermittent truck and forklift noise (loading and unloading deliveries etc.), and process alarms, such as forklift reversing alarms, as well as use of power tools and general material handling. The site currently operates from 6:30am-11pm Monday to Friday.

1.2 Criteria

Hunter Galvanizing in accordance with conditions listed in EPL 12014, issued under the Protection of the Environment Operations Act 1997. The licence conditions relating to noise emissions include:

L3.1 Noise emissions from the operation of the premises must:

- a) Not exceed an LAeq noise emission criterion of 52 dB(A) during the day (7 am to 6 pm) at the nearest residential receiver.
- b) Not exceed an LAeq noise emission criterion of 43 dB(A) during the evening (6 pm to 10 pm) at the nearest residential receiver, and
- c) Not exceed an LAeq noise emission criterion of 43 dB(A) during the night (10 pm to 7 am) at the nearest residential receiver.

The noise limits apply under winds of up to 3 metres per second (measured at 10 metres above ground level) and Pasquill stability class from A to F.

L3.2 For the purpose of noise measurement for condition L3.1, the LAeq noise level must be measured or computed at the most affected area within 30 metres of the residence or at the boundary, if the boundary is closer than 30 metres to the residence, over a period/s of 15 minutes using a "FAST" response on the sound level meter.

L3.3 For the purpose of the noise measurements referred to in Condition L3.1, 5dB must be added to the measured level if the noise is substantially tonal or impulsive in character.

In order to evaluate compliance with these conditions, assessment of both measured noise levels and meteorological conditions are required.

2.0 Methodology

2.1 Hunter Galvanizing Site Noise Monitoring

Nearest receiver: Noise receivers are commonly defined as domestic premises, hotels, educations institutions, hospitals, clinics and other similar uses where people may be present for extended durations. For reporting purposes, 10 old punt road, Tomago 2322 was used to be consistent with previous environmental noise reports and attenuation calculated results.

In order to determine the noise contribution of the facility, direct site boundary measurements were used from one point in addition to the nearest identified receiver. The site and locations monitored are identified in **Figure 1** and sample locations are shown in **Table 1**.

Figure 1 Site Monitoring Locations

Table 1 Direct Environmental Noise Measured Locations

Location	Sample Description	Coordinates	
1	10 Old Punt Road, Tomago	-32.818712 151.707717	
2	13 Old Punt Road, Tomago	-32.821385 151.707813	

2.2 Calculation of noise

EPL noise limits are difficult to determine through direct measurement due to the influence of extraneous noise sources during the day, evening and night periods. As HG is situated in a highly industrialised area, it is impacted by heavy movement of cars, trucks and mobile equipment, as well as frequent use of many types of machinery. Therefore, an alternative method of determining compliance, in accordance with the Approved Methods for the Measurement and Analysis of Environmental Noise in NSW was considered appropriate.

In order to evaluate any potential noise contributions from HG, monitoring was carried out at a single location on the North-Western boundary of the site in order to predict the noise levels received at location 1.

The distance attenuation calculation below is used to determine the reduction of sound pressure level (SPL) as a function of distance. This method of noise calculation is suitable to satisfy EPL compliance under Condition L3.2 stating "noise levels must be measured or computed".

$$SPL_x = SPL_y - 20\log\left(\frac{d_x}{d_y}\right)$$

Where:

SPLx = Sound pressure level at distance x from the source in metres

- SPLy = Sound pressure level at distance y from the source in metres
- Dx = Distance in metres to location x from the source
- Dy = Distance in metres to location y from the source

2.3 Instrumentation

Direct measurements were conducted using a NATA calibrated Cirrus SLM Optimus 171B. This instrument has Class 1 characteristics as defined in AS IEC 61672.1-2004 "Electroacoustics - Sound Level Meters". Measurements were conducted over 15-minute intervals. Calibration of the instrument was confirmed with a Cirrus 515 Class 1 Sound Level Calibrator prior to, and at the completion of monitoring with all calibration checks at 94.2dB. All equipment used for the monitoring has current NATA accredited calibration certificates.

The sound level meter was set to 'fast' time, A weighting and programmed to store $L_{Aeq}(15 \text{ min})$ and L_{A90} (15 min) noise levels during each measurement period.

3.0 Monitoring

3.1 Meteorological Conditions

For the purposes of this condition:

- a) Data recorded by the Bureau of Meteorology's meteorological station located at Williamtown Automatic Weather Station (AWS) (ID: 061078) was used to determine meteorological conditions; and
- b) Temperature inversion conditions (stability category) are to be determined by the Pasquill-Gifford method referred to in Part D1.3.1 of Appendix D in the NSW Industrial Noise Policy.

Meteorological parameters were also taken onsite via portable wind anemometer and temperature gauge. Conditions at the time of monitoring were suitable to meet the criteria listed in L3.1 of EPL 12014.

Meteorological conditions for each sampling period are shown in Table 2.

Table 2 Meteorological Conditions

Period	Time	Temperature (C ^o)	Wind speed ¹ (m/s)- Williamtown AWS		Insolation ² (W/m ²)	Cloud Coverage (Oktas)	Pasquill– Gifford stability category
Day	14:48	33	5.5	1.3	357	0	C-D
Evening	21:31	26	4.7	<1.0	N/A	0	E
Night	22:24	25	4.7	<1.0	N/A	0	E

Note ¹ wind speed data supplemented using handheld anemometer as Williamtown AWS conditions proved unrepresentative. Note² Insolation defined as Strong, Moderate and Slight based solar radiation data provided by BOM. Strong >500 W/m², Moderate 300-500 W/Mm², Slight <300 W/m².

3.2 Noise Descriptors

Table 3 Noise Descriptors

Descriptor	
	The LAeq descriptor is used for both the intrusiveness noise level and the amenity noise level.
L _{Aeq}	This descriptor represents the level of average noise energy over the relevant period of measurement and takes account of peak noise levels as well as the degree of noise fluctuation.
	This descriptor is most widely correlated with the subjective effect of noise.
1 400	The A-weighted sound pressure level that is exceeded for 90 percent of the time over which a given sound is measured.
	Any underlying level of noise present in the ambient noise level after extraneous noise is removed is defined as the L_{a90} descriptor.

3.3 Environment Protection Licence Noise Limits

Table 4 EPL Noise limits (EPL ID: 12014)

4

Time period	Measurement parameter	Noise level dB(A)
Day (7am-6pm)	L _{Aeq} (15 minute)	52
Evening (6pm-10pm)	L _{Aeq} (15 minute)	43
Night (10pm-7am)	L _{Aeq} (15 minute)	43

Results 4.0

Direct environmental noise monitoring was conducted at two locations during the day, evening and night time period.

The results are presented as:

- L_{Aeq} (15min) (the equivalent continuous sound level);
- L_{A90} (15min) (the sound pressure level exceeded for 90% of the measurement period);
- Direct environmental noise monitoring results from two locations (10 Old Punt Road, Tomago • and 13 Old Punt Road, Tomago) presented in Table 5; and
- Attenuation calculated environmental noise results are presented in Table 6. •

Table 5 Hunter Galvanising Environmental Noise Results, 26 November 2024

Period	Location	Time	L _{Aeq} dB(A)	L _{A90} dB(A)	Observations	
Day	1	14:48	72.7	56.7	Consistent movement of trucks, cars and motorcycles along Old Punt Road. Background noise dominated by cicadas and crickets. Consistent noise generated from trucks idling at the truck stop near the sample location. Industrial processes nearby could not be heard over traffic movement.	
	2	14:23	55.6	47.2	Regular forklift movement, reverse alarms and horns. Material handling noise from forklifts and personnel. Background noise of cicadas and crickets as well as distance and persistent 'hum' dominating much of the background noise from a nearby industrial site. General metal impact noises from inside the facility as well as infrequent process alarms inside workshop. Occasional power tool usage onsite and grinding at a nearby offsite location.	
Evening	1	21:31	61.7	44.6	Intermittent trucks and cars passing on Old Punt Road as well as trucks infrequently pulling into stopping bay adjacent to sample location. Cricket and persistent 'hum' dominate background noise. Occasional reverse alarms in distance.	
	2	21:07	55.8	52.8	Infrequent movement of forklifts, reverse alarms and horn. General metal impact noises from inside facility as well as process alarms. Persistent 'hum' dominating much of the background noise from a nearby industrial site. Background crickets.	
Night	1	22:24	61.2	40.2	Intermittent trucks and cars passing on Old Punt Road as well as trucks infrequently pulling into and out of stopping bay adjacent to sample location. Crickets made up majority of the background noise. Note – 'Hum' noise previously heard was not apparent during this noise recording.	
	2	22:01	54.6	52.1	Infrequent movement of forklifts, reverse alarms and horn. General metal impact noises from inside facility as well as process alarms. Persistent 'hum' dominating much of the background noise from a nearby industrial site. Background crickets.	

Table 6 Attenuation Calculated Hunter Galvanizing Environmental Noise Results, 26 November 2024

Period	Location	Time	Calculated L _{Aeq} dB(A)	L _{Aeq} EPL limit dB(A)	Compliant
Day	1	14:48	39.2	52	Yes
Evening	1	21:31	39.4	43	Yes
Night	1	22:24	38.2	43	Yes

5

5.0 Discussion

Environmental noise monitoring was conducted on 26 November 2024, during day, evening and night time periods. A Weighted, 15-minute samples were taken using a NATA calibrated class 1 sound level meter at the nearest receiver as directed in Environment Protection Licence 12014. Noise level contributions from HG were unable to be heard from the receiver location, as such, a second monitoring event at the HG site boundary for day, evening and night was deemed necessary to assess noise contributions. Noise level data taken from location 2 (HG boundary) was then used to compute noise levels at the receiver location.

Meteorological observations on the day of noise monitoring were mostly clear skies with light winds. The evening and night periods were clear skies with little to no wind. The Pasquill's stability categories were chosen based off the nearest local weather station (Williamtown AWS) for wind speed and cloud coverage, as well as daily solar radiation from the Bureau of Meteorology. Day, evening and night monitoring periods are in line with section L3.1 of the EPL (12014), and have been categorised as C-D, E and E respectively.

On 26 November 2024 the HG facility was operating under normal conditions as advised by staff. At the time of monitoring, site noise from HG was very minor compared to the surrounding industries and main road between locations 1 and 2, which has heavy truck and car traffic throughout the day and moderate levels of movement through the evening and night. Any noise contributions from HG were not audible at the nearest receiver (Location 1) at either day, evening or night periods, therefore an attenuation calculation was used to determine LAeq site noise contribution and remove the influence of extraneous noise sources. Much of the noise emissions observed from the onsite boundary consisted of forklift movements around the premises, material handling, reverse alarms and horns, occasional use of power tools and impact noise generated from metal handling inside the premises. Background noise heard at the boundary was primarily from nearby industrial activities and an underlying electrical 'hum' produced by another site. At the offsite receiver location, noise emission was dominated by passing trucks, cars and motorcycles on Old Punt Road, as well as trucks entering the nearby truck stop. Background noise was heavily made up of cicada drone, crickets and distant industrial activities.

The described 'hum' noise which was audible during the evening (but absent during the day and night periods) at the receiver location was emitting from a neighbouring site and contributed to the tonality noise of the monitoring for those noise sampling periods.

The nearest receiver location (10 old punt road, Tomago 2322) was used for consistency with previous environmental noise reports. The location at 10 old punt road, Tomago is classified as an E4 - general industrial land zone and may not be an ideal monitoring location. Investigating into other potential receiver locations shows the nearest site (819 Tomago Road, Tomago) at 810m away may have closer attributes to be classed as a domestic premises. 819 Tomago Road, Tomago as the nearest receiver would have calculated noise emissions levels generated from the HG site to be:

- Day 31.4dB;
- Evening 31.6dB; and
- Night 30.4dB.

6

6.0 Conclusion

Port Hunter Environmental have undertaken noise monitoring for Hunter Galvanizing at their 13 Old Punt Road, Tomago site. The purpose of this study was to monitor noise emission produced by the Hunter Galvanizing site at the nearest receiver to assess compliance with the stipulated criteria listed in the Environmental Protection Licence 12014. Direct noise contributions were unable to be determined at the nearest receiver due to excessive ambient noise and as such, noise emission levels were taken from the boundary of HG to calculate any potential contributions coming from site activities.

To satisfy the criteria listed in section L3.1 of the EPL (12014) ('winds up to 3 metres per second'), it was determined that meteorological data recorded from the Williamtown Automatic weather station at the time of the assessment were not representative of the local wind speed, therefore manual measurements on site were also taken which were in line with this criterion.

LAeq noise emissions for day, evening and night period were within the EPL criteria for each monitoring period. The attenuated noise contributions computed from the HG premises as well as meteorological conditions at the time of monitoring were considered to be compliant with conditions established in L3.1 EPL 12014.

This concludes the Hunter Galvanizing Pty Ltd Environmental Noise Report. If there are any questions relating to this sampling event, please do not hesitate to contact either Dylan Flannery or Sharn Crosdale of pHE.

Dylan Flannery

Environmental TechnicianE sharn@phenviro.com.au

- Ph 02 4967 7880 Mob 0466 625 772
- www.phenviro.com.au

Sharn Crosdale

Director/Operations Manager • E <u>sharn@phenviro.com.au</u>

- Ph 02 4967 7880 Mob 0417 801 692
- www.phenviro.com.au

Appendix 1 - Environmental Noise Terminology

The following is a brief description of acoustic terminology used in this report:

Sound power level	The total sound emitted by a source				
Sound pressure level	The amount of sound at a specified point				
Decibel [dB]	The measurement unit of sound				
A Weighted decibels [dB(A])	The A weighting is a frequency filter applied to measured noise levels to represent how humans hear sounds. The A-weighting filter emphasises frequencies in the speech range (between 1kHz and 4 kHz) which the human ear is most sensitive to, and places less emphasis on low frequencies at which the human ear is not so sensitive. When an overall sound level is A-weighted it is expressed in units of dB (A).				
Decibel scale	The decibel scale is logarithmic in order to produce a better representation of the response of the human ear. A 3 dB increase in the sound pressure level corresponds to a doubling in the sound energy.A 10 dB increase in the sound pressure level corresponds to a perceived doubling in volume. Examples of decibel levels of common sounds are as follows:OdB(A)Threshold of human hearing30dB(A)A quiet country park40dB(A)Whisper in a library50dB(A)Open office space70dB(A)Inside a car on a freeway80dB(A)Uutboard motor90dB(A)Jackhammer/Subway train110 dB(A)Rock Concert115dB(A)Limit of sound permitted in industry120dB(A)747 take off at 250 metres				
Frequency [f]	The repetition rate of the cycle measured in Hertz (Hz). The frequency corresponds to the pitch of the sound. A high frequency corresponds to a high-pitched sound and a low frequency to a low-pitched sound.				
LAeq	The constant sound level which, when occurring over the same period of time, would result in the receiver experiencing the same amount of sound energy.				
L _{max}	The maximum sound pressure level measured over the measurement period				
L _{min}	The minimum sound pressure level measured over the measurement period				
L ₁₀	The sound pressure level exceeded for 10% of the measurement period.				
Lago	The sound pressure level exceeded for 90% of the measurement period.				
Ambient noise	The all-encompassing noise at a point composed of sound from all sources near and far.				
Background noise	The underlying level of noise present in the ambient noise when extraneous noise (such as transient traffic and dogs barking) is removed. The L_{A90} sound pressure level is used to quantify background noise.				
Traffic noise	The total noise resulting from road traffic. The L_{eq} sound pressure level is used to quantify traffic noise.				
Day	The period from 0700 to 1800 h Monday to Saturday and 0800 to 1800 h Sundays and Public Holidays.				
Evening	The period from 1800 to 2200 h Monday to Sunday and Public Holidays.				
Night	The period from 2200 to 0700 h Monday to Saturday and 2200 to 0800 h Sundays and Public Holidays.				
Assessment background level [ABL]	The overall background level for each day, evening and night period for each day of the noise monitoring.				
Rating background level [RBL]	The overall background level for each day, evening and night period for the entire length of noise monitoring.				

Appendix 2 – Noise Reports

Name Time Duratie Instru	on ment	Location 1 - 26/11/2024 00:15:00 G301210, Cl	Receiver (Day) 2:48:44 PM R:171B	: 10 Old Punt Person	: Road Pla	ice	Project
Calibra Before	ation 25 PN	5/11/2024 1:3 1	33 Offset	0.86 dB	After		Offset
B	Basic Va	alues	Statistical L	evels (Ln)			
LAeq		72.7 dB	LAF1	84.2 dB			
LAE		102.2 dB	LAF5	75.0 dB			
LAFMa	IX	96.4 dB	LAF10	72.4 dB			
			LAF50	63.4 dB			
			LAF90	56.7 dB			
			LAF95	54.5 dB			
			LAF99	52.8 dB			
ן 140						-	140
							120 -
_110 -						_	
Aec						(B	100 -
- 	Λ				A	vel (o	80 -
FMa	1A	MALA MA	M Joan Munder	MMM	M MM. MMM) é	60 -
× 50 - 20		00 00 PC			u UV - ₩ 1.	_	40 - 20
2:50:00 PI 26/1	м 1/2024 2	2:55:0 48:44 PM:	00 PM Time	3:00:00 PM 26/11,	/2024 3:03:44 PM		16k 331.5
							Frequency (Hz)

Name Time Duration Instrument	Location 2 - 26/11/2024 00:15:00 G301210, Cl	Site Boundary 2:23:40 PM R:171B	(Day): 13 Old Person	l Punt Road Place		Project	
Calibration Before 2! Pl	5/11/2024 1:3 M	3 Offset	0.86 dB	After		Offset	
Basic V LAeq LAE LAFMax	alues 55.6 dB 85.1 dB 81.8 dB	Statistical L LAF1 LAF5 LAF10 LAF50 LAF90 LAF95 LAF99	evels (Ln) 65.1 dB 57.0 dB 55.2 dB 50.4 dB 47.2 dB 46.4 dB 45.4 dB				
140 110 10 10 10 10 10 10 10 10	2:23:40 PM	DO PM Time	2:35:00 PM 26/11,	14.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Level (dB)	140 120 100 80 60 40 20 ∞ 5 $\frac{32}{5}$ $\frac{53}{5}$ Frequency (Hz)	

Name Time Duratior Instrum	ו ent	Location 1 - 26/11/2024 00:15:00 G301210, CF	Receiver (Eve 9:31:22 PM R:171B	ning): 10 Old I Person	Punt Road	Place		Project
Calibrat Before	ion 25 PM	/11/2024 1:3 1	3 Offset	0.86 dB	After			Offset
LAeq LAE LAFMax	sic Va	61.7 dB 91.2 dB 80.1 dB	Statistical LAF1 LAF5 LAF10 LAF50	Levels (Ln) 75.1 dB 68.6 dB 62.7 dB 50.2 dB				
140]			LAF90 LAF95 LAF99	44.6 dB 43.5 dB 41.9 dB				140 -
LAFMax 50 - 26/11/2	9:35:1 2024 9:	00 PM 31:22 PM	9:40:00 PI Time	M 26/11/	9:45:00 PM /2024 9:46:22	PM	Level (dB)	120 100 80 60 40 20 80 60 40 5 10 5 10 5 10 5 10 5 10 5 10 10 10 10 10 10 10 10

r	lame	Location 2 -	Site Boundary	(Evening): 13			
٦	īme	26/11/2024	9:07:53 PM	Person		Place	Project
0	Duration	00:15:00					
I	nstrument	G301210, Cl	R:171B				
C	Calibration				_		
E	Sefore 2	25/11/2024 1:3 PM	3 Offset	0.86 dB	After		Offset
Ē	Basic	Values	Statistical L	evels (Ln)			
Γ	LAeq	55.8 dB	LAF1	62.5 dB			
	LAE	85.3 dB	LAF5	58.3 dB			
	LAFMax	74.5 dB	LAF10	57.1 dB			
			LAF50	54.5 dB			
			LAF90	52.8 dB			
			LAF95	52.4 dB			
			LAF99	51.6 dB			
140	Γ(140
							120 -
110) –						
LAe						<u>6</u>	100 -
5 80						el (d	80 -
AFM.	,					Lev	(A)
ax x	Acronaciona	And the second second	the man have the second have	and a support of the second	Manshart	Annanal	
50							40 -
							20
20	9:10:00 PM 26/11/2024	9:07:53 PM	9:15:00 PM Time	9:20:00 26/11) PM /2024 9:22:53	PM	14 14 14 14 14 14 14 14 14 14
							Frequency (Hz)

Name Time Duration Instrume	Location 1 - 26/11/2024 00:15:00 ent G301210, Cl	Receiver (Nigh 10:24:10 PM R:171B	t): 10 Old Put Person	nt Road Pla	ace	Project
Calibratio Before	on 25/11/2024 1:3 PM	3 Offset	0.86 dB	After		Offset
Bas	ic Values	Statistical L	evels (Ln)			
LAeq	61.2 dB	LAF1	75.7 dB			
LAE	90.7 dB	LAF5	63.2 dB			
LAFMax	83.0 dB	LAF10	56.1 dB			
		LAF50	43.0 dB			
		LAF90	40.2 dB			
		LAF95	39.7 dB			
		LAF99	38.9 dB			
140 T					-	140
					_	120 -
_110					-	100
Aeq					(BL	100 -
5 80			A		vel (c	80 -
FMa					Le –	60 -
× 50 - Munacount	and and hall	Marina and a start and	way Wilnesse	un and an and a second second	F	40 - 11111111111111111111111111111111111
20 10:25:00 PM 26/11/2	10:30:00 F 024 10:24:10 PM	и Time	10:35:00 PM 26/11/2	.024 10:39:10 PM		8% 500 1250 8 16 16 16 16
						Frequency (Hz)

÷.

N T D Iı	ame ime uration nstrument	Location 2 - 26/11/2024 00:15:00 G301210, C	- Site Boundary 10:01:32 PM R:171B	(Night): 13 O Person	ld Punt Roa	d Place		Project
C B	alibration efore 2 F	25/11/2024 1: M	33 Offset	0.86 dB	After			Offset
	Basic \	/alues	Statistical L	evels (Ln)				
ī	Aeq	54.6 dB	LAF1	59.6 dB				
ι	AE	84.1 dB	LAF5	57.2 dB				
L	AFMax	69.8 dB	LAF10	56.2 dB				
			LAF50	53.8 dB				
			LAF90	52.1 dB				
			LAF95	51.7 dB				
			LAF99	51.0 dB				
140	1						140]	
							120 -	
110	-							
LAec						á	100 -	
							80 -	
FM _a			w.		1	ā	60 -	
≍ 50	Muhan	www.www.	Mandunaahaahad	mannandulla	umaanboohd	podlation	40 -	
20	10:05 26/11/2024	:00 PM 10:01:32 PM	10:10:00 PM Time	26/11/2	10:15:00 PM 2024 10:16:32	PM	16 18 16	16k 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18
								Frequency (Hz)

Appendix 3 – Calibration Certificates

ACOUSTIC & VIBRATION CALIBRATION CENTRE

CERTIFICATE OF CALIBRATION

Certificate Number: 7603

NATA Accreditation No: 20688

Customer: Active Environmental Solutions

Test Object:	Manufacturer:	Model:	Serial No:	ID:
Sound Level Meter	Cirrus	Optimus 171B	G301210	7603
Microphone	Cirrus	MK224	212412D	7603
Preamplifier	Cirrus	MK224	9847F	7603
Calibrator	None	-	-	-
Connecting Cable	None	-	-	-

Information:

Test Configuration:Microphone on PreampInstrument Manual:Optimus Sound Level Meters User Manual Part B Technical InformationFirmware Version:V5.3.2807Class of Instrument:Class 1Source of Correction Data:CirrusReference Level:94 dBReference Level Range:55 - 135 dB

Environmental Conditions:	Pressure	Temperature	Relative Humidity
Reference Conditions:	101.325 kPa	23.0 °C	50.0 % RH
Conditions Before Measurement:	101.10 kPa	24.7 °C	55.3 % RH
Conditions After Measurement:	101.05 kPa	25.4 °C	58.8 % RH

The laboratory environmental conditions remained within the acceptable limits as defined in IEC 61672.3 and IEC 61260 throughout the calibration test.

The measurements are performed according to the *IEC 61672 Sound level meters – Part 3: Periodic tests (2013)*, and *DIN 45657 Sound Level Meters – Requirements for Special Applications (2015)*. Where applicable testing has also been completed in accordance with *IEC 61260 Electroacoustics – Octave-band and fractional-octave-band filters (2016)*.

This certificate only relates to the test object calibrated. This certificate shall only be reproduced in full with the permission of Calibre Technology.

Accredited for compliance with ISO/IEC 17025 - Calibration.

The results of the tests, calibrations and/or measurements included in this document are traceable to the International System of Units (SI) via international or Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

Date of Calibration: Date of Issue: Authorised Signatory:

07/02/2024 07/02/2024

laure dichender

Claire Richardson

Certificate Number: 7603

NATA Accreditation No: 20688

Statement of Conformity

The sound level meter submitted for testing has successfully completed the Class 1 periodic tests of IEC 61672-3, for the environmental conditions under which the tests were performed. However, no general statement or conclusion can be made about conformance of the sound level meter to the full requirements of IEC 61672-1 because evidence was not publicly available, from an independent testing organization responsible for pattern approvals, to demonstrate that the model of sound level meter fully conforms to the requirements of IEC 61672-1:2002, and because the periodic tests of IEC 61672-3 cover only a limited subset of the specifications in IEC 61672-1.

Uncertainty

For all tests, the expanded uncertainty of measurement is reported at approximately 95% confidence level with a coverage factor k, of 2 calculated in accordance with the principles stated in *JCGM 100:2008 – Evaluation of Measurement Data – Guide to the Expression of Uncertainty in Measurement.*

Except where noted otherwise, the results provided in this report are associated with the following expanded uncertainties: Electrical Tests: 0.09 dB

Toneburst: 0.09 dB Acoustic Tests: 0.13 dB for 31.5 Hz to below 2 kHz 0.14 dB for 2 kHz to below 8 kHz 0.16 dB for 8 kHz to below 12.5 kHz 0.10 dB at a reference frequency of 1 kHz

Bandpass Filters: 0.10 dB for attenuation less than 4 dB 0.15 dB for attenuation less above 4 dB to 18 dB 0.25 for attenuation 18 dB to 80 dB

Traceability

The measured values are traceable to the following laboratories:Sound Pressure Level:National Measurement Institute, AustraliaVoltage:TR Calibration, AustraliaFrequency:TR Calibration, AustraliaAmbient Pressure:IPAC Solutions, AustraliaTemperature:IPAC Solutions, AustraliaRelative Humidity:IPAC Solutions, Australia

Test Overview

Periodic tests were performed in accordance with procedures from IEC 61672-3 Ed. 2.0 (2013) and, where acoustic filters are provided on the instrument, in accordance with IEC 61260-3(2019). In accordance with Clause 8.1 of IEC 61672-3, all design features that are required by IEC 61672-1 that are available on the instrument have been tested.

The verification measurements were performed using the calibration system Nor1504A with software Nor1019. The output signal was manually confirmed to match instrument display as per IEC61672-3 (2013, Clause 8.4) Most of the verification tests are electrical tests. Test signals are fed to the sound measuring device through an adapter that resembles the microphone signal. A special adapter with a suitable electrical characteristic is used.

Some measurements are acoustical tests. This is the acoustical part of the self noise test and the acoustical verification of the frequency response. This test was completed automatically.

Detailed measurement results are printed on the following pages. Each of the verification test points has a Result indication (P, U, or N) that tells the obtained result of the actual test.

P = the result is Passed U = due to the Uncertainty of the measurement it is not possible to state if the result is passed or not

N = the result is Not passed

All verification tests must have a Passed indication in order to fulfill the requirements in the standard.

Acoustical levels are stated relative to 20 $\mu Pa.$ Other dB levels are relative values. Version of Calibration Software Used: 6.1S-(CT 2.1.2)

ACOUSTIC & VIBRATION CALIBRATION CENTRE

Certificate Number: 7603

NATA Accreditation No: 20688

Version of Template Certificate Used: v8.6

Measurement Results:

Passed
Passed

Certificate Number: 7603

NATA Accreditation No: 20688

Results

Indication at the Calibration Check Frequency - IEC61672-3 Ed.2 #10

Reference Calibrator: WSC3 - B&K4226_lk_94dB Reference calibrator level: 94.22 Before calibration: Environmental corrections: Other corrections: Notional level: Calibrator level before adjustment: 94.1 After calibration: Environmental corrections: Other corrections: Notional level: Reference calibrator level after calibration: 94.1 Associated Calibrator: - -Associated calibrator level: Not calibrated Test Passed

Self-generated Noise - IEC 61672-3 Ed.2.0 #11

Network	Level	Max	Uncert.	Result	Comment
	(dB)	(dB)	(dB)		
A	14.5	15.0	0.09	Р	Equivalent capacity
С	15.9	24.0	0.09	Р	Equivalent capacity
Z	18.5	35.0	0.09	Р	Equivalent capacity

Test Passed 07/02/2024

Note: Compliance with this test is not a requirement of IEC61672.3-2013, these results are provided for reference only.

Acoustical Signal Tests of A Frequency Weighting - IEC 61672-3 Ed.2.0 #12

C-Weighted	Results: Free	Field F	lesponse		
Frequency	Response	Τc	pl.	Uncert.	Result
	(dB)	(dB)	(dB)	(dB)	
125 Hz	0.1	1.0	-1.0	0.2	P
1 kHz	-0.1	0.7	-0.7	0.2	P
8 kHz	-1.0	1.5	-2.5	0.2	P

Test Passed 07/02/2024

The overall frequency response of the sound level meter, nominal case reflections and microphone response has shown to conform with the requirements in IEC 61672-3 for a Class 1 sound level meter.

Frequency response test using multi frequency calibrator.

Sources for Correction Data:

Calibrator Levels and Uncertainty: National Measurement Institute

Case Reflections Uncertainty Source: Cirrus

No information on the uncertainty of measurement, required by IEC61672-3:2019, for the correction data given in the Instruction Manual or obtained from the manufacturer or supplier of the sound level meter, or the manufacturer of the microphone, or the manufacturer of the multi-frequency sound calibrator was provided in the Instruction Manual or made available by the manufacturer or supplier of the sound level meter. The uncertainty of measurement of the correction data was therefore assumed to be the maximum-permitted uncertainty given in IEC 62585 for the corresponding free-field correction data and for a coverage probability of 95%.

ACOUSTIC & VIBRATION CALIBRATION CENTRE

Certificate Number: 7603

NATA Accreditation No: 20688

Frequency Weightings: A Network - IEC 61672-3 Ed.2.0 #13.3

Freq	Ref.	Meas.	Т	ol.	Uncert.	Dev.	Result
(Hz)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63.1	95.0	95.4	1.0	-1.0	0.09	0.4	P
125.9	95.0	95.3	1.0	-1.0	0.09	0.3	P
251.2	95.0	95.1	1.0	-1.0	0.09	0.1	Р
501.2	95.0	95.1	1.0	-1.0	0.09	0.1	P
1000.0	95.0	94.9	0.7	-0.7	0.09	-0.1	Р
1995.3	95.0	94.7	1.0	-1.0	0.09	-0.3	Р
3981.1	95.0	94.5	1.0	-1.0	0.09	-0.5	P
7943.3	95.0	94.4	1.5	-2.5	0.09	-0.6	Р
15848.9	95.0	95.1	2.5	-16.0	0.09	0.1	P
Test Passed	07/02/2024						

Frequency Weightings: C Network - IEC 61672-3 Ed.2.0 #13.3

1 2 0 9	1.01.	110000	-	0±.	0110010.	2011	1.00410
	Level	Value					
(Hz)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63.1	95.0	95.0	1.0	-1.0	0.09	0.0	P
125.9	95.0	95.0	1.0	-1.0	0.09	0.0	P
251.2	95.0	94.9	1.0	-1.0	0.09	-0.1	P
501.2	95.0	95.0	1.0	-1.0	0.09	0.0	P
1000.0	95.0	94.9	0.7	-0.7	0.09	-0.1	P
1995.3	95.0	94.9	1.0	-1.0	0.09	-0.1	P
3981.1	95.0	94.7	1.0	-1.0	0.09	-0.3	P
7943.3	95.0	94.6	1.5	-2.5	0.09	-0.4	P
15848.9	95.0	95.2	2.5	-16.0	0.09	0.2	P

Test Passed 07/02/2024

Frequency Weightings: Z Network - IEC 61672-3 Ed.2.0 #13.3

Freq	Ref.	Meas.	Tol.		Uncert.	Dev.	Result
	Level	Value					
(Hz)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
63.1	95.0	95.1	1.0	-1.0	0.09	0.1	Р
125.9	95.0	95.0	1.0	-1.0	0.09	0.0	Р
251.2	95.0	94.9	1.0	-1.0	0.09	-0.1	Р
501.2	95.0	94.9	1.0	-1.0	0.09	-0.1	Р
1000.0	95.0	94.9	0.7	-0.7	0.09	-0.1	Р
1995.3	95.0	94.9	1.0	-1.0	0.09	-0.1	Р
3981.1	95.0	94.8	1.0	-1.0	0.09	-0.2	Р
7943.3	95.0	94.8	1.5	-2.5	0.09	-0.2	P
15848.9	95.0	94.5	2.5	-16.0	0.09	-0.5	P
Most Doggod (7/02/2024						

Certificate Number:

NATA Accreditation No: 20688

Frequency and Time Weightings at 1 kHz IEC 61672-3 Ed.2.0 #14

7603

Weigh	ntings	Ref.	Measured	Li	im.	Uncert.	Dev.	Result
Time	Netw	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
Fast	A	94.0	94.0	0.1	-0.1	0.09	0.0	P
Fast	С	94.0	94.0	0.1	-0.1	0.09	0.0	P
Fast	Z	94.0	94.0	0.1	-0.1	0.09	0.0	P
Slow	A	94.0	94.0	0.1	-0.1	0.09	0.0	P
Leq	A	94.0	94.0	0.1	-0.1	0.09	0.0	P
SEL	A	114.0	114.0	0.1	-0.1	0.09	0.0	P
Test	Passed	07/02/2024						

Level Linearity on the Reference Level Range - IEC 61672-3 Ed.2.0 #16

	Ref N	Measured	T.i	m	Uncert	Dev	Result
	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	ncourc
Measur	cements	are SPL	measuren	nents	(02)	(02)	
(94.0	94.0	0.8	-0.8	0.09	0.0	Р
- -	99.0	99.0	0.8	-0.8	0.09	0.0	P
10)4.0	104.0	0.8	-0.8	0.09	0.0	P
10)9.0	109.0	0.8	-0.8	0.09	0.0	P
11	L4.0	114.0	0.8	-0.8	0.09	0.0	P
11	L9.0	119.0	0.8	-0.8	0.09	0.0	P
12	24.0	124.0	0.8	-0.8	0.09	0.0	P
12	29.0	129.0	0.8	-0.8	0.09	0.0	Р
13	35.0	135.0	0.8	-0.8	0.09	0.0	P
13	36.0	136.0	0.8	-0.8	0.09	0.0	P
13	37.0	137.0	0.8	-0.8	0.09	0.0	P
13	38.0	138.0	0.8	-0.8	0.09	0.0	P
13	39.0	139.0	0.8	-0.8	0.09	0.0	P
9	94.0	94.0	0.8	-0.8	0.09	0.0	P
8	39.0	89.0	0.8	-0.8	0.09	0.0	P
8	34.0	84.0	0.8	-0.8	0.09	0.0	P
7	79.0	79.0	0.8	-0.8	0.09	0.0	P
7	74.0	74.0	0.8	-0.8	0.09	0.0	P
6	59.0	69.0	0.8	-0.8	0.09	0.0	P
6	54.0	64.0	0.8	-0.8	0.09	0.0	P
5	59.0	59.0	0.8	-0.8	0.09	0.0	P
5	54.0	54.0	0.8	-0.8	0.09	0.0	P
4	19.0	49.0	0.8	-0.8	0.09	0.0	P
4	14.0	44.0	0.8	-0.8	0.09	0.0	P
3	39.0	39.0	0.8	-0.8	0.09	0.0	P
3	34.0	34.0	0.8	-0.8	0.09	0.0	P
2	29.0	29.0	0.8	-0.8	0.09	0.0	P
2	24.0	24.0	0.8	-0.8	0.09	0.0	P
2	23.0	23.0	0.8	-0.8	0.09	0.0	P
2	22.0	22.0	0.8	-0.8	0.09	0.0	P
2	21.0	21.0	0.8	-0.8	0.09	0.0	P
2	20.0	20.0	0.8	-0.8	0.09	0.0	P
Test H	Passed ()7/02/202	24				

Full scale setting: 140dB Measured at 8 kHz

ACOUSTIC & VIBRATION CALIBRATION CENTRE

Certificate Number: 7603

NATA Accreditation No: 20688

Toneburst Response - IEC 61672-3 Ed.2.0 #18

Burst	t type	Ref.	Measured	Li	Lm.	Uncert.	Dev.	Result
		(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	
Fast	200 mSec	136.0	136.0	0.5	-0.5	0.09	0.0	P
Fast	2.0 mSec	119.0	119.0	1.0	-1.5	0.09	0.0	P
Fast	0.25 mSec	110.0	109.9	1.0	-3.0	0.09	-0.1	P
Slow	200 mSec	129.6	129.6	0.5	-0.5	0.09	0.0	P
Slow	2.0 mSec	110.0	110.0	1.0	-3.0	0.09	0.0	P
SEL	200 mSec	130.0	129.6	0.5	-0.5	0.09	-0.4	P
SEL	2.0 mSec	110.0	110.0	1.0	-1.5	0.09	0.0	P
SEL	0.25 mSec	101.0	100.0	1.0	-3.0	0.09	-1.0	P
Test	Passed 07/	/02/2024						

Peak C Sound Level - IEC 61672-3 Ed.2.0 #19

Pulse	P	ulse	Ref.	Ref.	Measured	Lim.	Uncert.	Dev.	Result
Туре		Freq.	RMS	Peak	Value				
		(Hz)	(dB)	(dB)	(dB)	(+/-dB)	(dB)	(dB)	
1 cycle		8 k	127.0	130.4	128.6	2.0	0.09	-1.8	P
Pos 1/2	cycle	500	130.0	132.4	132.5	1.0	0.09	0.1	P
Neg 1/2	cycle	500	130.0	132.4	132.2	1.0	0.09	-0.2	P
Test Pas	sed 07	/02/202	4						

Overload Indication - IEC 61672-3 Ed.2.0 #20

	Deviation	n Lim.	uncert.	Result
	(dB)	(+/-dB)	(dB)	
Level difference of positive and negative pulse.	s: 0.1	1.5	0.09	Р
-				
Positive 1/2 cycle 4 kHz. Overload occurred at:	141.8			
Negative 1/2 cycle 4 kHz. Overload occurred at:	141.7			
Test Passed 07/02/2024				

High Level Stability Test - IEC 61672-3 Ed.2.0 #21

Test signal:	: Sine wav	e at 1	kHz		
Initial	Final	Diff.	Lim.	Uncert.	Result
level	level		value		
(dB)	(dB)	(dB)	(dB)	(dB)	
139.0	139.0	0.0	0.1	0.09	P
Test Passed	07/02/2024				

Long Term Stability Test - IEC 61672-3 Ed.2.0 #15

Test	signal:	Sine wave a	AL I KHZ			
Time	interval	l StartLevel	StopLevel	Difference	Tolerance	Result
(mn	n:SS)	(dB)	(dB)	(dB)	(dB)	
41	L:11	93.9	93.9	0.0	0.1	P
Test	Passed (07/02/2024				

Certificate Number: 7603

NATA Accreditation No: 20688

DIN 45657 (2013): Statistical Distribution Test #5.2

Ln %	Ref.	Measured	Tolerance	Resul	t
7	Value	Value	Norm	Value	
	(dB)	(dB)	(dB)	(dB)	
1%	139.4	139.3	0.5	-0.1	Ρ
5%	137.0	136.8	0.5	-0.2	Ρ
10%	134.0	133.9	0.5	-0.1	Ρ
50%	110.0	109.9	0.5	-0.1	Ρ
90%	86.0	85.9	0.5	-0.1	Ρ
95%	83.0	82.8	0.5	-0.2	Ρ
99%	80.6	80.5	0.5	-0.1	Ρ
LeqA	128.8	128.7	0.5	-0.1	Ρ
Test Passed	07/02/2024	1			

Filter Test - IEC 61260.3 2019 1/1 Octave: Relative Attenuation at Midband Frequency #10.2

Instrument Class: 1 Reference SPL: 94 dB Frequency Base: 10 Octave Band: 1/1 Tolerance (dB): +/-0.4Octave Band Frequency Filter Out Filter In Difference Uncert. Result (Hz) (dB) (Hz) (dB) (dB) (dB) 31.5 31.623 94.20 94.00 0.2 0.09 Ρ 63 63.096 94.10 93.90 0.2 0.09 Ρ 125 94.00 93.90 0.09 Ρ 125.893 0.1 250 93.90 93.90 251.189 0.0 0.09 Ρ 500 501.187 93.90 93.90 0.0 0.09 Ρ 1000.000 94.00 93.90 Ρ 1000 0.1 0.09 2000 1995.262 93.90 93.90 0.0 0.09 Ρ 3981.072 93.90 4000 93.90 0.0 0.09 Ρ 8000 7943.282 93.80 93.80 0.0 0.09 Ρ 16000 15848.932 93.70 93.80 0.1 0.09 Ρ

Test Passed 07/02/2024

Filter Test - IEC 61260.3 2019 1/1 Octave: Linear Operating Range #11.5

Test 1/1 Octave Filter X=-5 fexact=31.623Hz Class 1

Uncertainty	= 0.09 dB			
Nominal	Measured	LoLim	HiLim	Result
L[dB]	L[dB]	L[dB]	L[dB]	[P/F]
135.0	135.0	-0.5	0.5	P
134.0	133.9	-0.5	0.5	P
133.0	132.9	-0.5	0.5	P
132.0	131.9	-0.5	0.5	P
131.0	131.0	-0.5	0.5	P
130.0	129.9	-0.5	0.5	P
125.0	124.9	-0.5	0.5	P
120.0	120.0	-0.5	0.5	P
115.0	115.0	-0.5	0.5	P
110.0	109.9	-0.5	0.5	P
105.0	105.0	-0.5	0.5	P
100.0	100.0	-0.5	0.5	P
95.0	95.0	-0.5	0.5	P
90.0	90.0	-0.7	0.7	P
85.0	84.9	-0.7	0.7	P

ACOUSTIC & VIBRATION CALIBRATION CENTRE

Certificate Number: 7603

NATA Accreditation No: 20688

80.0	79.9	-0.7	0.7	P	
75.0	74.9	-0.7	0.7	P	
70.0	69.9	-0.7	0.7	P	
65.0	64.9	-0.7	0.7	P	
60.0	59.9	-0.7	0.7	P	
59.0	58.9	-0.7	0.7	P	
58.0	57.9	-0.7	0.7	P	
57.0	56.9	-0.7	0.7	P	
56.0	55.9	-0.7	0.7	P	
55.U	54.9 Dilton	-U./	0./		1
Test 1/1 Oct	ave filler	X= U lexad	31=1000.00	UHZ CLASS .	L
Nominal	- 0.09 uB	Totim	Uitim	Posult	
I.[dB]	I.[dB]	I [dB]		ID/F1	
135 0	134 9	=0 5	0 5		
134 0	133.9	-0.5	0.5	P	
133.0	132.9	-0.5	0.5	P	
132.0	131.9	-0.5	0.5	P	
131.0	130.9	-0.5	0.5	P	
130.0	129.9	-0.5	0.5	P	
125.0	124.9	-0.5	0.5	P	
120.0	119.9	-0.5	0.5	P	
115.0	114.9	-0.5	0.5	P	
110.0	109.9	-0.5	0.5	P	
105.0	104.9	-0.5	0.5	Р	
100.0	99.9	-0.5	0.5	P	
95.0	94.9	-0.5	0.5	P	
90.0	89.9	-0.7	0.7	P	
85.0	84.9	-0.7	0.7	P	
80.0	79.9	-0.7	0.7	P	
75.0	74.9	-0.7	0.7	P	
70.0	69.9	-0.7	0.7	P	
65.0	64.9	-0.7	0.7	P	
60.0	59.9	-0.7	0.7	P	
59.0	58.9	-0.7	0.7	P	
58.0	57.9	-0.7	0.7	P	
57.0	56.9	-0.7	0.7	P	
56.0	55.9	-0.7	0.7	P	
55.U	54.9 Dilton	-0./	U./	P Class	1
Test 1/1 Oct	ave Filter	X= 4 Iexad	20=15848.9	32HZ CIASS	T
Nominal	- 0.09 dB	Totim	Hitim	Posul+	
I.[dB]	Measureu I.[dB]	I.[dB]	T [dB]	ID/F1	
135 O	134 8	=0 5	0 5	[1/1] P	
134 0	133.8	-0.5	0.5	P	
133.0	132.8	-0.5	0.5	P	
132.0	131.8	-0.5	0.5	P	
131.0	130.8	-0.5	0.5	P	
130.0	129.8	-0.5	0.5	P	
125.0	124.8	-0.5	0.5	P	
120.0	119.8	-0.5	0.5	P	
115.0	114.8	-0.5	0.5	P	
110.0	109.8	-0.5	0.5	P	
105.0	104.8	-0.5	0.5	P	
100.0	99.8	-0.5	0.5	P	
95.0	94.7	-0.5	0.5	P	
90.0	89.8	-0.7	0.7	P	
85.0	84.7	-0.7	0.7	P	
80.0	79.7	-0.7	0.7	Р	

ACOUSTIC & VIBRATION CALIBRATION CENTRE

Certificate Number: 7603

NATA Accreditation No: 20688

	75.0	74.7	-0.7	0.7	P
	70.0	69.7	-0.7	0.7	Ρ
	65.0	64.7	-0.7	0.7	Ρ
	60.0	59.7	-0.7	0.7	Ρ
	59.0	58.7	-0.7	0.7	Ρ
	58.0	57.7	-0.7	0.7	Ρ
	57.0	56.7	-0.7	0.7	Ρ
	56.0	55.7	-0.7	0.7	Ρ
	55.0	54.7	-0.7	0.7	Ρ
Test	Passed	07/02/2024			

Filter Test - IEC 61260.3 2019 1/1 Octave: Overload Indicator #11.8

Class 1, 1/1 Octave Filter at Frequency of: 31.623 Hz with Uncertainty: 0.09 dB Deviation Lim. Uncert. Result Value (+/-dB) (dB) (dB) Level difference of positive and negative pulses: 0.1 0.5 0.09 Ρ Positive 1/2 cycles of 31.623 Hz. Overload occurred at: 140.9 Negative 1/2 cycles of 31.623 Hz. Overload occurred at: 140.8 Class 1, 1/1 Octave Filter at Frequency of: 1000 Hz with Uncertainty: 0.09 dB Deviation Lim. Uncert. Result Value (dB) (+/-dB) (dB) Level difference of positive and negative pulses: 0.2 0.5 0.09 Ρ Positive 1/2 cycles of 1000 Hz. Overload occurred at: 140.4 Negative 1/2 cycles of 1000 Hz. Overload occurred at: 140.6 Class 1, 1/1 Octave Filter at Frequency of: 15848.932 Hz with Uncertainty: 0.09 dB Deviation Lim. Uncert. Result Value (+/-dB) (dB) (dB) Level difference of positive and negative pulses: 0.4 0.5 0.09 Ρ Positive 1/2 cycles of 15848.932 Hz. Overload occurred at: 148.1 Negative 1/2 cycles of 15848.932 Hz. Overload occurred at: 148.5 Test Passed 07/02/2024

Filter Test - IEC 61260.3 2019 1/1 Octave: Lower Limit of Operating Range #12 Reference Range:55 - 135 dB

1/1 (Octave Band	Frequency	Level(dB)	Max(dB)	Uncert.(dB)	Result
	31.5	31.623	15.10	35.00	0.09	P
	63	63.096	11.80	35.00	0.09	P
	125	125.893	10.00	35.00	0.09	P
	250	251.189	10.40	35.00	0.09	P
	500	501.187	12.60	35.00	0.09	P
	1000	1000.000	13.90	35.00	0.09	P
	2000	1995.262	14.90	35.00	0.09	P
	4000	3981.072	17.50	35.00	0.09	P
	8000	7943.282	19.10	35.00	0.09	P
	16000	15848.932	26.10	35.00	0.09	P
Test	Passed 07/0	02/2024				

Calibration Location: Unit 3, 4 Tombo Street, Capalaba, QLD 4157 07 3245 1730 enquiries@calibretechnology.com.au Page 10 of 16

Certificate Number: 7603

NATA Accreditation No: 20688

Filter Test - I	EC 61260.3	2019 1/1 Oc	tave: Relat	ive Atte	nuation #13
Test 1/1 Octa	ave Filter	X=-5 fexact=	=31.623Hz C	lass 1	
Uncertainty:	< 4 dB = 0.	.09dB, 4-80dE	B = 0.33 dB		
Nominal	Measured	LoLim	HiLim	Result	
f[Hz]	L[dB]	[dB]	[dB]	[P/F]	
1.995	33.8	0.0	64.0	P	
3.981	41.9	0.0	73.0	P	
7.943	61.4	0.0	92.0	P	
15.849	88.2	0.0	116.5	P	
22.387	131.9	129.0	132.0	P	
24.406	133.9	132.7	134.3	P	
26.607	134.1	133.4	134.3	P	
29.007	134.0	133.6	134.3	P	
31.623	133.9	133.7	134.3	P	
34.475	134.0	133.6	134.3	P	
37.584	134.1	133.4	134.3	P	
40.973	133.9	132.7	134.3	P	
44.668	129.2	129.0	132.0	P	
63.096	54.7	0.0	116.5	P	
125.893	25.4	0.0	92.0	P	
251.189	26.5	0.0	73.0	P	
501.187	30.8	0.0	64.0	P	
Test 1/1 Octa	ave Filter	X= 0 fexact=	=1000.000Hz	Class 1	
Uncertainty:	< 4 dB = 0.	.09dB, 4-80dE	3 = 0.33dB		
Nominal	Measured	LoLim	HiLim	Result	
f[Hz]	L[dB]	[dB]	[dB]	[P/F]	
63.096	35.9	0.0	64.0	P	
125.893	40.2	0.0	73.0	P	
251.189	57.4	0.0	92.0	P	
501.187	86.7	0.0	116.5	P	
707.946	131.2	129.0	132.0	P	
771.792	133.9	132.7	134.3	P	
841.395	134.1	133.4	134.3	P	
917.276	134.0	133.6	134.3	P	
1000.000	133.9	133.7	134.3	P	
1090.184	134.0	133.6	134.3	P	
1188.502	134.0	133.4	134.3	P	
1295.687	133.9	132.7	134.3	P	
1412.538	130.7	129.0	132.0	P	
1995.262	60.0	0.0	116.5	P	
3981.072	44.4	0.0	92.0	P	
7943.282	34.8	0.0	73.0	P	
15848.932	35.3	0.0	64.0	P	
Test 1/1 Octa	ave Filter	X= 4 fexact=	=15848.932H	z Class	1
Uncertainty:	< 4 dB = 0.	.09dB, 4-80dE	3 = 0.33dB		
Nominal	Measured	LoLim	HiLim	Result	
f[Hz]	L[dB]	[dB]	[dB]	[P/F]	
1000.000	55.9	0.0	64.0	P	
1995.262	57.6	0.0	73.0	P	
3981.072	62.1	0.0	92.0	P	
7943.282	85.2	0.0	116.5	P	
11220.185	129.0	129.0	132.0	P	
12232.071	133.8	132.7	134.3	P	
13335.214	133.9	133.4	134.3	P	
14537.844	133.8	133.6	134.3	P	
15848.932	133.8	133.7	134.3	P	
17278.260	134.0	133.6	134.3	P	
18836.491	133.9	133.4	134.3	P	

ACOUSTIC & VIBRATION CALIBRATION CENTRE

Certificate Number: 7603

NATA Accreditation No: 20688

20535.250	133.7	132.7	134.3	P
22387.211	131.3	129.0	132.0	P
31622.777	69.5	0.0	116.5	P
63095.734	48.8	0.0	92.0	P
125892.541	52.7	0.0	73.0	P
200000.000	50.8	0.0	64.0	P
Test Passed	07/02/2024			

Instrument Class: 1 Products: 1 Product Class: 1 Reference SPL: 94 dB Frequency Base: 10 Octave Band: 1/3 Tolerance (dB): +/-0.4 Octave Band: 1/3 (dB) (dB) (dB) (dB) (dB) (dB) (Hz) (Hz) (dB) (dB) (dB) (dB) (dB) (dB) (dB) 12.5 12.589 94.10 94.10 0.0 0.09 P 20 19.953 94.30 94.00 0.3 0.09 P 21 15 31.623 94.20 94.00 0.2 0.09 P 31.5 31.623 94.20 94.00 0.1 0.09 P P 40 39.811 94.10 94.00 0.1 0.09 P P 63 63.096 94.10 94.00 0.1 0.09 P P 100 100.000 94.00 0.1 0.09 P P 100 100.000 94.00 0.0 0.0 100 P 125 125.893 94.00 94.00 0.0 0.0 0.9 P 100 100.00 94.00 0.0 0.0 0.9 P 100 100 100.9 P	Filtor Tost - I	EC 61260 3	2019 1/3 Oct	avo: Rolati	ve Attenuati	on at Midł	and Fred	uency #10.2
Reference SPL: 94 dB Frequency Base: 10 Octave Band: 1/3 Tolerance (dB): +/-0.4 Octave Band Frequency Filter Out Filter In Difference Uncert. Result (Hz) (Hz) (dB) (dB) (dB) 12.5 12.589 94.10 94.10 0.0 0.09 P 16 15.849 94.10 94.10 0.0 0.09 P 20 19.953 94.30 94.00 0.3 0.09 P 25 25.119 94.30 94.00 0.2 0.09 P 31.5 31.623 94.20 94.00 0.1 0.09 P 40 39.811 94.10 94.10 0.0 0.09 P 50 50.119 94.10 94.00 0.1 0.09 P 80 79.433 94.10 94.00 0.1 0.09 P 125 125.893 94.00 94.00 0.0 0.09 P 100 100.000 94.00 94.00 0.1 0.09 P 125 125.893 94.00 94.00 0.1 0.09 P 125 125.893 94.00 94.00 0.0 0.09 P 160 158.489 94.00 94.00 0.0 0.09 P 200 199.526 94.00 94.00 0.0 0.09 P 200 199.526 94.00 94.00 0.0 0.09 P 315 316.228 94.00 94.00 0.0 0.09 P 305 501.187 94.00 94.00 0.0 0.09 P 306 630.957 94.00 94.00 0.0 0.09 P 500 501.187 94.00 94.00 0.0 0.0 0.09 P 500 501.187 94.00 94.00 0.0 0.0 0.09 P 500 501.187 94.00 94.00 0.0 0.0 0.09 P 500 501.188 93.90 94.00 0.0 0.0 0.09 P 500 501.188 93.90 94.00 0.0 0.0 0.09 P 500 501.188 93.90 94.00 0.0 0.0 0.09 P 500 501.188 93 94.00 94.00 0.0 0.0 0.09 P 500 501.188 93 94.00 94.00 0.0 0.0 0.09 P 500 501.188 93 94.00 94.00 0.0 0.0 0.09 P 500 5262 94.100 94.00 0.0 0.0 0.09 P 500 5261.886 94.00 94.00 0.0 0.	Instrument C	1 = 0 + 2 = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0	2019 1/3 000	ave. neiali	ve Allenuali	Ji at mui	Janu Freq	uency #10.2
Netlence 3.1. 94 ub Frequency Base: 10 Octave Band: 1/3 Tolerance (dB): +/-0.4 Octave Band Frequency Filter Out Filter In Difference Uncert. Result (Hz) (Hz) (dB) (dB) 12.5 12.589 94.10 94.10 0.0 0.09 P 20 19.953 94.30 94.00 0.3 0.09 P 20 19.953 94.30 94.00 0.3 0.09 P 25 25.119 94.30 94.00 0.3 0.09 P 40 39.811 94.10 94.00 0.1 0.09 P 50 50.119 94.10 94.00 0.1 0.09 P 63 63.096 94.10 94.00 0.1 0.09 P 100 100.000 94.00 0.1 0.09 P P 125 125.893 94.00 94.00 0.0 0.0 94 100 100.000 94.00 94.00 0.0 0.0 9 9 126 125.893 94.00	Deference SD							
Prequency base: 10 Octave Band: 1/3 Tolerance (dB): +/-0.4 Octave Band Frequency (Hz) (Hz) (dB) (dB) (dB) 12.5 12.589 94.10 94.10 0.0 0.09 P 16 15.849 94.10 94.00 0.3 0.09 P 20 19.953 94.20 94.00 0.2 0.09 P 31.5 31.623 94.20 94.00 0.2 0.09 P 40 39.811 94.10 94.00 0.1 0.09 P 63 63.096 94.10 94.00 0.1 0.09 P 63 63.096 94.10 94.00 0.1 0.09 P 100 100.000 94.00 94.00 0.1 0.09 P 125 125.893 94.00 94.00 0.0 0.09 P 100 100.000 94.00 94.00 0.0 0.09 P 125 125.8493	Reference SP	L: 94 UB						
Octave Band Frequency Filter Out Filter In Difference Uncert. Result (Hz) (Hz) (dB) (dB) (dB) (dB) 12.5 12.589 94.10 94.10 0.0 0.09 P 16 15.849 94.10 94.10 0.0 0.09 P 20 19.953 94.30 94.00 0.3 0.09 P 25 25.119 94.20 94.00 0.2 0.09 P 40 39.811 94.10 94.00 0.1 0.09 P 50 50.119 94.10 94.00 0.1 0.09 P 63 63.096 94.10 94.00 0.1 0.09 P 60 79.433 94.00 94.00 0.1 0.09 P 100 100.000 94.00 94.00 0.0 0.09 P 125 125.893 94.00 94.00 0.0 0.09 P 200 199.526 94.00 94.00 0.0 0.09	Frequency Ba	.se: 10						
Tolerance (aB): $+/-0.4$ Octave Band Frequency Filter Out Filter In Difference Uncert. Result (Hz) (Hz) (dB) (dB) (dB) (dB) 12.5 12.589 94.10 94.10 0.0 0.09 P 16 15.849 94.10 94.10 0.0 0.09 P 20 19.953 94.30 94.00 0.3 0.09 P 25 25.119 94.30 94.00 0.3 0.09 P 40 39.811 94.10 94.00 0.1 0.09 P 50 50.50.119 94.10 94.00 0.1 0.09 P 63 63.096 94.10 94.00 0.1 0.09 P 100 100.000 94.00 94.00 0.1 0.09 P 125 125.83 94.00 94.00 0.0 0.0 0.9 P 160 158.489 94.00 94.00 0.0 0.0 0.9 P 200 199.526 94.00 94.00 0.0 0.0 9 P 250 251.189 93.90 93.90 0.0 0.09 P 250 251.189 93.90 93.90 0.0 0.09 P 250 251.189 93.90 93.90 0.0 0.09 P 260 199.526 94.00 94.00 0.0 0.09 P 250 251.187 94.00 94.00 0.0 0.09 P 250 251.187 94.00 94.00 0.0 0.09 P 250 50.1187 94.00 94.00 0.0 0.09 P 250 251.188 94.00 94.00 0.0 0.0 0.09 P 250 251.188 94.00 94.00 0.0 0.0 0.09 P	Octave Band:	1/3						
Octave Band Frequency Filter Out Filter In Difference Oncert. Result (Hz) (Hz) (dB) (dB) (dB) (dB) 12.5 12.589 94.10 94.10 0.0 0.09 P 20 19.953 94.30 94.00 0.3 0.09 P 25 25.119 94.30 94.00 0.2 0.09 P 40 39.811 94.10 94.00 0.1 0.09 P 50 50.119 94.10 94.00 0.1 0.09 P 63 63.096 94.10 94.00 0.1 0.09 P 100 100.000 94.00 0.1 0.09 P 125 125.893 94.00 94.00 0.0 0.09 P 200 199.526 94.00 94.00 0.0 0.09 P 215 125.843 94.00 94.00 0.0 0.09 P	Tolerance (d	IB): +/-0.4			D		D	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Octave Band	Frequency	Filter Out	Filter In	Difference	Uncert.	Result	
12.5 12.589 94.10 94.10 0.0 0.09 P 16 15.849 94.10 94.10 0.0 0.09 P 20 19.953 94.30 94.00 0.3 0.09 P 25 25.119 94.30 94.00 0.2 0.09 P 40 39.811 94.10 94.00 0.1 0.09 P 50 50.119 94.10 94.10 0.0 0.1 0.09 P 63 63.096 94.10 94.10 0.0 0.1 0.09 P 80 79.433 94.10 94.00 0.1 0.09 P 100 100.000 94.00 94.00 0.0 0.09 P 125 125.893 94.00 94.00 0.0 0.99 P 160 158.489 94.00 94.00 0.0 0.99 P 200 199.526 94.00 94.00 0.0 0.99 P 250 251.189 93.90 93.90 0.0 0.09 P 400 398.107 94.00 94.00 0.0 0.99 P 630 630.957 94.00 94.00 0.0 0.99 P 630 630.957 94.00 94.00 0.0 0.99 P 1000 1000.000 94.00 94.00 0.0 0.99 P 1250 1258.925 93.90 94.00 0.0 0.99 P <tr< td=""><td>(Hz)</td><td>(Hz)</td><td>(dB)</td><td>(dB)</td><td>(dB)</td><td>(dB)</td><td>_</td><td></td></tr<>	(Hz)	(Hz)	(dB)	(dB)	(dB)	(dB)	_	
16 15.849 94.10 94.10 0.0 0.09 P 20 19.953 94.30 94.00 0.3 0.09 P 25 25.119 94.30 94.00 0.2 0.09 P 40 39.811 94.10 94.00 0.1 0.09 P 40 39.811 94.10 94.10 0.0 0.1 0.09 P 50 50.119 94.10 94.10 0.0 0.1 0.09 P 63 63.096 94.10 94.00 0.1 0.09 P 100 100.000 94.00 0.1 0.09 P 100 100.000 94.00 0.0 0.0 0.9 P 125 125.893 94.00 94.00 0.0 0.09 P 200 199.526 94.00 94.00 0.0 0.99 P 250 251.189 93.90 93.90 0.0 0.09 P 400 398.107 94.00 94.00 0.0 0.99 P 400 398.107 94.00 94.00 0.0 0.99 P 630 630.957 94.00 94.00 0.0 0.99 P 600 794.328 94.00 94.00 0.0 0.99 P 1000 1000.000 94.00 94.00 0.0 0.99 P 100 1000.000 94.00 94.00 0.0 0.99	12.5	12.589	94.10	94.10	0.0	0.09	P	
20 19.953 94.30 94.00 0.3 0.09 P 25 25.119 94.30 94.00 0.3 0.09 P 31.5 31.623 94.20 94.00 0.2 0.09 P 40 39.811 94.10 94.00 0.1 0.09 P 50 50.119 94.10 94.00 0.1 0.09 P 63 63.096 94.10 94.00 0.1 0.09 P 80 79.433 94.10 94.00 0.1 0.09 P 100 100.000 94.00 94.00 0.0 0.99 P 125 125.893 94.00 94.00 0.0 0.99 P 200 199.526 94.00 94.00 0.0 0.99 P 250 251.189 93.90 93.90 0.0 0.099 P 400 398.107 94.00 94.00 0.0 0.999 P 400 398.107 94.00 94.00 0.0 0.999 P 630 630.957 94.00 94.00 0.0 0.9999 P 800 794.328 94.00 94.00 0.0 0.99999 P 1000 1000.000 94.00 94.00 0.0 0.999999 P 1000 1000.000 94.00 94.00 0.0 0.9999999 P 1000 1000.000 94.00 94.00 0.0 $0.099999999999999999999999999999999$	16	15.849	94.10	94.10	0.0	0.09	Р	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	19.953	94.30	94.00	0.3	0.09	P	
31.5 31.623 94.20 94.00 0.2 0.09 P 40 39.811 94.10 94.00 0.1 0.09 P 50 50.119 94.10 94.10 0.0 0.1 0.09 P 63 63.096 94.10 94.00 0.1 0.09 P 80 79.433 94.10 94.00 0.1 0.09 P 100 100.000 94.00 94.00 0.0 0.99 P 125 125.893 94.00 94.00 0.0 0.99 P 200 199.526 94.00 94.00 0.0 0.99 P 250 251.189 93.90 93.90 0.0 0.99 P 400 398.107 94.00 94.00 0.0 0.99 P 630 630.957 94.00 94.00 0.0 0.99 P 800 794.328 94.00 94.00 0.0 0.99 P 1000 1000.000 94.00 94.00 0.0 0.99 P 1000 1000.000 94.00 94.00 0.0 0.99 P 1000 1258.925 93.90 94.00 0.0 0.99 P 1250 1258.925 93.90 94.00 0.0 0.99 P 2000 1995.262 94.00 94.00 0.0 0.99 P 2500 2511.886 94.00 94.00 0.0 0.0 0.99	25	25.119	94.30	94.00	0.3	0.09	P	
40 39.811 94.10 94.00 0.1 0.09 P 50 50.119 94.10 94.10 0.0 0.09 P 63 63.096 94.10 94.00 0.1 0.09 P 80 79.433 94.10 94.00 0.1 0.09 P 100 100.000 94.00 94.00 0.0 0.99 P 125 125.893 94.00 94.00 0.0 0.099 P 160 158.489 94.00 94.00 0.0 0.099 P 200 199.526 94.00 94.00 0.0 0.099 P 250 251.189 93.90 93.90 0.0 0.099 P 400 398.107 94.00 94.00 0.0 0.099 P 630 630.957 94.00 94.00 0.0 0.099 P 800 794.328 94.00 94.00 0.0 0.099 P 1000 1000.000 94.00 94.00 0.0 0.99 P 1000 1000.000 94.00 94.00 0.0 0.99 P 1250 1258.925 93.90 94.00 0.0 0.099 P 1600 1584.893 94.00 94.00 0.0 0.099 P 2000 1995.262 94.00 94.00 0.0 0.099 P 2000 1995.262 94.00 94.00 0.0 0.0 0.99 P <td>31.5</td> <td>31.623</td> <td>94.20</td> <td>94.00</td> <td>0.2</td> <td>0.09</td> <td>P</td> <td></td>	31.5	31.623	94.20	94.00	0.2	0.09	P	
50 50.119 94.10 94.10 0.0 0.09 P 63 63.096 94.10 94.00 0.1 0.09 P 80 79.433 94.10 94.00 0.1 0.09 P 100 100.000 94.00 94.00 0.0 0.99 P 125 125.893 94.00 94.00 0.0 0.99 P 160 158.489 94.00 94.00 0.0 0.99 P 200 199.526 94.00 94.00 0.0 0.99 P 250 251.189 93.90 93.90 0.0 0.99 P 400 398.107 94.00 94.00 0.0 0.99 P 500 501.187 94.00 94.00 0.0 0.99 P 630 630.957 94.00 94.00 0.0 0.99 P 800 794.328 94.00 94.00 0.0 0.99 P 1000 1000.000 94.00 94.00 0.0 0.99 P 1250 1258.925 93.90 94.00 0.0 0.99 P 1250 1258.925 93.90 94.00 0.0 0.99 P 1600 1584.893 94.00 94.00 0.0 0.09 P 2000 1995.262 94.00 94.00 0.0 0.09 P 2500 2511.886 94.00 94.00 0.0 0.0 0.09 P<	40	39.811	94.10	94.00	0.1	0.09	P	
63 63.096 94.10 94.00 0.1 0.09 P 80 79.433 94.10 94.00 0.1 0.09 P 100 100.000 94.00 94.00 0.0 0.09 P 125 125.893 94.00 94.00 0.0 0.09 P 160 158.489 94.00 94.00 0.0 0.09 P 200 199.526 94.00 94.00 0.0 0.09 P 250 251.189 93.90 93.90 0.0 0.09 P 315 316.228 94.00 94.00 0.0 0.09 P 400 398.107 94.00 94.00 0.0 0.09 P 500 501.187 94.00 94.00 0.0 0.09 P 630 630.957 94.00 94.00 0.0 0.09 P 1000 1000.000 94.00 94.00 0.0 0.09 P 1250 1258.925 93.90 94.00 0.0 0.09 P 1600 1584.893 94.00 94.00 0.0 0.09 P 2000 1995.262 94.00 94.00 0.0 0.09 P 2500 2511.886 94.00 94.00 0.0 0.0 0.99 P	50	50.119	94.10	94.10	0.0	0.09	P	
80 79.433 94.10 94.00 0.1 0.09 P 100 100.000 94.00 94.00 0.0 0.09 P 125 125.893 94.00 94.00 0.0 0.09 P 160 158.489 94.00 94.00 0.0 0.09 P 200 199.526 94.00 94.00 0.0 0.09 P 250 251.189 93.90 93.90 0.0 0.09 P 315 316.228 94.00 94.00 0.0 0.09 P 400 398.107 94.00 94.00 0.0 0.09 P 500 501.187 94.00 94.00 0.0 0.09 P 630 630.957 94.00 94.00 0.0 0.09 P 1000 1000.000 94.00 94.00 0.0 0.09 P 1250 1258.925 93.90 94.00 0.1 0.09 P 1600 1584.893 94.00 94.00 0.0 0.09 P 2000 1995.262 94.00 94.00 0.0 0.09 P 2500 2511.886 94.00 94.00 0.0 0.09 P 2500 2511.886 94.00 94.00 0.0 0.09 P	63	63.096	94.10	94.00	0.1	0.09	P	
100100.00094.0094.000.00.09P125125.89394.0094.000.00.09P160158.48994.0094.000.00.09P200199.52694.0094.000.00.09P250251.18993.9093.900.00.09P315316.22894.0094.000.00.09P400398.10794.0094.000.00.09P500501.18794.0094.000.00.09P630630.95794.0094.000.00.09P10001000.00094.0094.000.00.09P12501258.92593.9094.000.10.09P16001584.89394.0094.000.00.09P20001995.26294.0094.000.00.09P20002511.88694.0094.000.00.09P	80	79.433	94.10	94.00	0.1	0.09	P	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	100.000	94.00	94.00	0.0	0.09	P	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	125	125.893	94.00	94.00	0.0	0.09	Р	
200199.52694.0094.000.00.09P250251.18993.9093.900.00.09P315316.22894.0094.000.00.09P400398.10794.0094.000.00.09P500501.18794.0094.000.00.09P630630.95794.0094.000.00.09P800794.32894.0094.000.00.09P10001000.00094.0094.000.00.09P12501258.92593.9094.000.10.09P16001584.89394.0094.000.00.09P20001995.26294.0094.000.00.09P25002511.88694.0094.000.00.09P	160	158.489	94.00	94.00	0.0	0.09	Р	
250251.18993.9093.900.00.09P315316.22894.0094.000.00.09P400398.10794.0094.000.00.09P500501.18794.0094.000.00.09P630630.95794.0094.000.00.09P800794.32894.0094.000.00.09P10001000.00094.0094.000.00.09P12501258.92593.9094.000.10.09P16001584.89394.0094.000.00.09P20001995.26294.0094.000.00.09P25002511.88694.0094.000.00.09P	200	199.526	94.00	94.00	0.0	0.09	P	
315316.22894.0094.000.00.09P400398.10794.0094.000.00.09P500501.18794.0094.000.00.09P630630.95794.0094.000.00.09P800794.32894.0094.000.00.09P10001000.00094.0094.000.00.09P12501258.92593.9094.000.10.09P16001584.89394.0094.000.00.09P20001995.26294.0094.000.00.09P25002511.88694.0094.000.00.09P	250	251.189	93.90	93.90	0.0	0.09	P	
400398.10794.0094.000.00.09P500501.18794.0094.000.00.09P630630.95794.0094.000.00.09P800794.32894.0094.000.00.09P10001000.00094.0094.000.00.09P12501258.92593.9094.000.10.09P16001584.89394.0094.000.00.09P20001995.26294.0094.000.00.09P25002511.88694.0094.000.00.09P	315	316.228	94.00	94.00	0.0	0.09	P	
500501.18794.0094.000.00.09P630630.95794.0094.000.00.09P800794.32894.0094.000.00.09P10001000.00094.0094.000.00.09P12501258.92593.9094.000.10.09P16001584.89394.0094.000.00.09P20001995.26294.0094.000.00.09P25002511.88694.0094.000.00.09P	400	398.107	94.00	94.00	0.0	0.09	P	
630630.95794.0094.000.00.09P800794.32894.0094.000.00.09P10001000.00094.0094.000.00.09P12501258.92593.9094.000.10.09P16001584.89394.0094.000.00.09P20001995.26294.0094.000.00.09P25002511.88694.0094.000.00.09P	500	501.187	94.00	94.00	0.0	0.09	P	
800794.32894.0094.000.00.09P10001000.00094.0094.000.00.09P12501258.92593.9094.000.10.09P16001584.89394.0094.000.00.09P20001995.26294.0094.000.00.09P25002511.88694.0094.000.00.09P	630	630.957	94.00	94.00	0.0	0.09	P	
10001000.00094.0094.000.00.09P12501258.92593.9094.000.10.09P16001584.89394.0094.000.00.09P20001995.26294.0094.000.00.09P25002511.88694.0094.000.00.09P	800	794.328	94.00	94.00	0.0	0.09	Р	
12501258.92593.9094.000.10.09P16001584.89394.0094.000.00.09P20001995.26294.0094.000.00.09P25002511.88694.0094.000.00.09P	1000	1000.000	94.00	94.00	0.0	0.09	Р	
16001584.89394.0094.000.00.09P20001995.26294.0094.000.00.09P25002511.88694.0094.000.00.09P	1250	1258.925	93.90	94.00	0.1	0.09	Р	
20001995.26294.0094.000.00.09P25002511.88694.0094.000.00.09P	1600	1584.893	94.00	94.00	0.0	0.09	P	
2500 2511.886 94.00 94.00 0.0 0.09 P	2000	1995.262	94.00	94.00	0.0	0.09	P	
	2500	2511.886	94.00	94.00	0.0	0.09	P	
3150 3162.278 94.00 94.00 0.0 0.09 P	31.50	3162.278	94.00	94.00	0.0	0.09	P	
4000 3981 072 93 90 94 00 0 1 0 09 P	4000	3981 072	93 90	94 00	0 1	0 09	P	
5000 5011 872 93 90 94 00 0 1 0 09 P	5000	5011 872	93 90	94 00	0 1	0 09	P	
6300 6319 573 93 90 93 90 0.0 0.09 P	6300	6309 573	93.90	93 90	0.0	0.09	P	
8000 7943 282 93 90 93 90 0 0 0 0 0 P	8000	7943 282	93.90	93.90	0.0	0.09	P	
	10000	10000 000	93 80	93 90	0 1	0 09	P	
12500 12589 254 93 70 93 80 0.1 0.09 P	12500	12589 254	93 70	93 80	0.1	0.09	P	
16000 15848 932 93 70 93 70 0.0 0.0 P	16000	15848 932	93.70	Q2 70	0.1	0.09	P	
20000 19952 623 93.70 94.00 0.3 0.09 P	20000	19952 623	93 70	94 00	0.0	0.09	P	

Test Passed 07/02/2024

Certificate Number: 7603

NATA Accreditation No: 20688

Filter Test -	IEC 61260.3	2019 1/3 (Octave: L	inear Oper	ating Range #11.5
Test 1/3 Oct	ave Filter	X=-15 fexa	act=31.623	Hz Class	1
Uncertainty	= 0.09 dB				
Nominal	Measured	LoLim	HiLim	Result	
L[dB]	L[dB]	L[dB]	L[dB]	[P/F]	
135.0	135.0	-0.5	0.5	P	
134.0	134.0	-0.5	0.5	Р	
133.0	133.0	-0.5	0.5	P	
132.0	132.0	-0.5	0.5	P	
131 0	131 0	-0.5	0 5	P	
130 0	130 0	-0.5	0.5	P	
125 0	125 0	-0.5	0.5	D	
120.0	120.0	-0.5	0.5	L D	
115 0	115 0	-0.5	0.5	L D	
110.0	110.0	-0.5	0.5	r D	
105.0	105.0	-0.5	0.5	r D	
100.0	100.1	-0.5	0.5	P	
100.0	100.1	-0.5	0.5	P	
95.0	95.1	-0.5	0.5	P	
90.0	90.1	-0.7	0.7	P	
85.0	85.0	-0.7	0.7	P	
80.0	80.0	-0.7	0.7	P	
75.0	75.0	-0.7	0.7	P	
70.0	70.0	-0.7	0.7	P	
65.0	65.0	-0.7	0.7	P	
60.0	60.0	-0.7	0.7	P	
59.0	59.0	-0.7	0.7	P	
58.0	58.0	-0.7	0.7	P	
57.0	57.0	-0.7	0.7	P	
56.0	56.0	-0.7	0.7	P	
55.0	55.0	-0.7	0.7	P	
Test 1/3 Oct	ave Filter	X= 0 fexad	ct=1000.00	OHz Class	1
Uncertainty	= 0.09 dB				
Nominal	Measured	LoLim	HiLim	Result	
L[dB]	L[dB]	L[dB]	L[dB]	[P/F]	
135.0	135.0	-0.5	0.5	P	
134.0	134.0	-0.5	0.5	P	
133.0	133.0	-0.5	0.5	P	
132.0	132.0	-0.5	0.5	P	
131.0	131.0	-0.5	0.5	P	
130.0	130.0	-0.5	0.5	P	
125.0	125.0	-0.5	0.5	P	
120.0	120.0	-0.5	0.5	P	
115.0	115.0	-0.5	0.5	P	
110.0	110.0	-0.5	0.5	P	
105.0	105.0	-0.5	0.5	P	
100.0	100.0	-0.5	0.5	P	
95.0	95.0	-0.5	0.5	P	
90.0	90.0	-0.7	0.7	Р	
85.0	85.0	-0.7	0.7	P	
80.0	80.0	-0.7	0.7	Р	
75.0	75.0	-0.7	0.7	P	
70.0	70.0	-0.7	0.7	P	
6.5 . 0	65.0	-0.7	0.7	P	
60.0	60.0	-0.7	0.7	P	
59.0	59.0	-0.7	0.7	P	
58.0	58.0	-0.7	0.7	P	
57 0	57 0	-0.7	0 7	- P	
56.0	56.0	-0.7	0.7	P	
55.0	55.0	-0.7	0.7	- P	

ACOUSTIC & VIBRATION CALIBRATION CENTRE

Certificate Number: 7603

NATA Accreditation No: 20688

Test 1/3 Oct	tave Filter	X= 12 fexa	ct=15848.	932Hz Class	1
Uncertainty	= 0.09 dB				
Nominal	Measured	LoLim	HiLim	Result	
L[dB]	L[dB]	L[dB]	L[dB]	[P/F]	
135.0	134.7	-0.5	0.5	Р	
134.0	133.7	-0.5	0.5	Р	
133.0	132.7	-0.5	0.5	P	
132.0	131.7	-0.5	0.5	P	
131.0	130.7	-0.5	0.5	P	
130.0	129.7	-0.5	0.5	P	
125.0	124.7	-0.5	0.5	P	
120.0	119.7	-0.5	0.5	P	
115.0	114.7	-0.5	0.5	P	
110.0	109.7	-0.5	0.5	P	
105.0	104.7	-0.5	0.5	P	
100.0	99.7	-0.5	0.5	P	
95.0	94.7	-0.5	0.5	P	
90.0	89.7	-0.7	0.7	P	
85.0	84.6	-0.7	0.7	P	
80.0	79.6	-0.7	0.7	P	
75.0	74.6	-0.7	0.7	P	
70.0	69.6	-0.7	0.7	P	
65.0	64.6	-0.7	0.7	P	
60.0	59.6	-0.7	0.7	P	
59.0	58.6	-0.7	0.7	P	
58.0	57.6	-0.7	0.7	Р	
57.0	56.6	-0.7	0.7	Р	
56.0	55.6	-0.7	0.7	Р	
55.0	54.6	-0.7	0.7	P	

Test Passed 07/02/2024

Filter Test - IEC 61260.3 2019 1/3 Octave: Overload Indicator #11.8

Class 1, 1/3 Octave Filter at Frequency of: 31.623 Hz with Uncertainty: 0.09 dB Deviation Lim. Uncert. Result Value (+/-dB) (dB) (dB) Level difference of positive and negative pulses: 0.1 0.09 Ρ 0.5 Positive 1/2 cycles of 31.623 Hz. Overload occurred at: 140.9 Negative 1/2 cycles of 31.623 Hz. Overload occurred at: 140.8 Class 1, 1/3 Octave Filter at Frequency of: 1000 Hz with Uncertainty: 0.09 dB Deviation Lim. Uncert. Result Value (+/-dB) (dB) (dB) Level difference of positive and negative pulses: 0.0 0.5 0.09 Ρ Positive 1/2 cycles of 1000 Hz. Overload occurred at: 140.4 Negative 1/2 cycles of 1000 Hz. Overload occurred at: 140.4 Class 1, 1/3 Octave Filter at Frequency of: 15848.932 Hz with Uncertainty: 0.09 dB Deviation Lim. Uncert. Result Value (dB) (+/-dB) (dB) Level difference of positive and negative pulses: 0.2 0.5 0.09 Ρ Positive 1/2 cycles of 15848.932 Hz. Overload occurred at: 151.5 Negative 1/2 cycles of 15848.932 Hz. Overload occurred at: 151.7 Test Passed 07/02/2024

Calibration Location: Unit 3, 4 Tombo Street, Capalaba, QLD 4157 07 3245 1730 enquiries@calibretechnology.com.au Page 14 of 16

Certificate Number: 7603

NATA Accreditation No: 20688

Filter Test - IEC 6	51260.3 2019	9 1/3 Octave	e: Lower Li	imit of Operat	ing Range #12
Reference Range:	55 - 135 dB			-	
1/3 Octave Band	Frequency	Level(dB)	Max(dB)	Uncert.(dB)	Result
31.5	31.623	10.50	35.00	0.09	P
40	39.811	9.40	35.00	0.09	P
50	50.119	8.80	35.00	0.09	P
63	63.096	7.10	35.00	0.09	P
80	79.433	5.10	35.00	0.09	P
100	100.000	4.50	35.00	0.09	P
125	125.893	3.90	35.00	0.09	P
160	158.489	7.00	35.00	0.09	P
200	199.526	2.90	35.00	0.09	P
250	251.189	6.70	35.00	0.09	P
315	316.228	6.80	35.00	0.09	P
400	398.107	7.90	35.00	0.09	P
500	501.187	8.80	35.00	0.09	P
630	630.957	6.70	35.00	0.09	P
800	794.328	9.70	35.00	0.09	P
1000	1000.000	8.80	35.00	0.09	P
1250	1258.925	7.60	35.00	0.09	Р
1600	1584.893	8.90	35.00	0.09	Р
2000	1995.262	10.40	35.00	0.09	P
2500	2511.886	10.00	35.00	0.09	Р
3150	3162.278	11.80	35.00	0.09	Р
4000	3981.072	12.80	35.00	0.09	Р
5000	5011.872	12.90	35.00	0.09	Р
6300	6309.573	13.60	35.00	0.09	P
8000	7943.282	14.40	35.00	0.09	P
10000	10000.000	15.10	35.00	0.09	P
12500	12589.254	16.90	35.00	0.09	P
Tost Passod 07/0	12/2024				

Test Passed 07/02/2024

Filter Test - IEC 61260.3 2019 1/3 Octave: Relative Attenuation #13

Test 1/3 Octave Filter X=-15 fexact=31.623Hz Class 1 Uncertainty: < 4dB = 0.09dB, 4-80dB = 0.33dBNominal Measured LoLim HiLim Result [P/F]L[dB] [dB] [dB] f[Hz] 5.865 49.4 0.0 64.0 Ρ 10.356 60.8 73.0 Ρ 0.0 16.805 69.5 0.0 92.0 Ρ 24.431 112.5 0.0 116.5 Ρ 129.0 28.184 132.0 132.0 Ρ 29.080 133.7 132.7 134.3 Ρ 29.953 134.0 133.4 134.3 Ρ 30.801 134.0 133.6 134.3 Ρ 31.623 134.0 133.7 134.3 Ρ 32.466 134.0 133.6 134.3 Ρ 133.9 133.4 33.386 134.3 Ρ 34.388 133.0 132.7 134.3 Ρ 35.481 131.9 132.0 Ρ 129.0 116.5 40.932 105.9 0.0 Ρ 59.505 34.5 0.0 92.0 Ρ 21.3 96.565 0.0 73.0 Ρ 170.508 Ρ 20.3 0.0 64.0

ACOUSTIC & VIBRATION CALIBRATION CENTRE

Certificate Number: 7603

NATA Accreditation No: 20688

Test 1/3 Oct	ave Filter	X= 0 fexact=	=1000.000Hz	z Class 1
Uncertainty:	< 4 dB = 0.	09dB, 4-80dB	B = 0.33 dB	
Nominal	Measured	LoLim	HiLim	Result
f[Hz]	L[dB]	[dB]	[dB]	[P/F]
185.462	35.5	0.0	64.0	P
327.477	57.7	0.0	73.0	P
531.427	66.3	0.0	92.0	P
772.574	110.9	0.0	116.5	P
891.251	131.2	129.0	132.0	P
919.577	133.3	132.7	134.3	P
947.190	133.9	133.4	134.3	P
974.019	134.0	133.6	134.3	P
1000.000	134.0	133.7	134.3	P
1026.674	134.0	133.6	134.3	Р
1055.754	134.0	133.4	134.3	Р
1087.457	133.4	132.7	134.3	Р
1122.018	131.4	129.0	132.0	P
1294.374	107.8	0.0	116.5	P
1881.728	32.5	0.0	92.0	P
3053.652	39.4	0.0	73.0	P
5391.949	26.9	0.0	64.0	P
Test 1/3 Oct	ave Filter	X= 12 fexact	t=15848.932	2Hz Class 1
Test 1/3 Oct Uncertainty:	ave Filter < 4dB = 0.	<pre>X= 12 fexact 09dB, 4-80dB</pre>	t=15848.932 B = 0.33dB	2Hz Class 1
Test 1/3 Oct Uncertainty: Nominal	ave Filter < 4dB = 0. Measured	X= 12 fexact 09dB, 4-80dH LoLim	t=15848.932 3 = 0.33dB HiLim	2Hz Class 1 Result
Test 1/3 Oct Uncertainty: Nominal f[Hz]	ave Filter < 4dB = 0. Measured L[dB]	<pre>X= 12 fexact 09dB, 4-80dB LoLim [dB]</pre>	t=15848.932 B = 0.33dB HiLim [dB]	2Hz Class 1 Result [P/F]
Test 1/3 Oct Uncertainty: Nominal f[Hz] 2939.370	<pre>ave Filter < 4dB = 0. Measured L[dB] 52.1</pre>	<pre>X= 12 fexact 09dB, 4-80dB LoLim [dB] 0.0</pre>	<pre>t=15848.932 B = 0.33dB HiLim [dB] 64.0</pre>	2Hz Class 1 Result [P/F] P
Test 1/3 Oct Uncertainty: Nominal f[Hz] 2939.370 5190.156	ave Filter < 4dB = 0. Measured L[dB] 52.1 60.5	X= 12 fexact 09dB, 4-80dH LoLim [dB] 0.0 0.0	<pre>t=15848.932 B = 0.33dB HiLim [dB] 64.0 73.0</pre>	2Hz Class 1 Result [P/F] P P
Test 1/3 Oct Uncertainty: Nominal f[Hz] 2939.370 5190.156 8422.543	<pre>ave Filter < 4dB = 0. Measured L[dB] 52.1 60.5 75.5</pre>	<pre>X= 12 fexact 09dB, 4-80dH LoLim [dB] 0.0 0.0 0.0</pre>	<pre>z=15848.932 3 = 0.33dB HiLim [dB] 64.0 73.0 92.0</pre>	2Hz Class 1 Result [P/F] P P P
Test 1/3 Oct Uncertainty: Nominal f[Hz] 2939.370 5190.156 8422.543 12244.475	<pre>ave Filter < 4dB = 0. Measured L[dB] 52.1 60.5 75.5 104.6</pre>	<pre>X= 12 fexact 09dB, 4-80dH LoLim [dB] 0.0 0.0 0.0</pre>	<pre>t=15848.932 a = 0.33dB HiLim [dB] 64.0 73.0 92.0 116.5</pre>	2Hz Class 1 Result [P/F] P P P P P
Test 1/3 Oct Uncertainty: Nominal f[Hz] 2939.370 5190.156 8422.543 12244.475 14125.375	<pre>ave Filter < 4dB = 0. Measured L[dB] 52.1 60.5 75.5 104.6 129.0</pre>	<pre>X= 12 fexact 09dB, 4-80dH LoLim [dB] 0.0 0.0 0.0 0.0 0.0 129.0</pre>	<pre>z=15848.932 a = 0.33dB HiLim [dB] 64.0 73.0 92.0 116.5 132.0</pre>	2Hz Class 1 Result [P/F] P P P P P P
Test 1/3 Oct Uncertainty: Nominal f[Hz] 2939.370 5190.156 8422.543 12244.475 14125.375 14574.309	<pre>ave Filter < 4dB = 0. Measured L[dB] 52.1 60.5 75.5 104.6 129.0 132.7</pre>	<pre>X= 12 fexact 09dB, 4-80dF LoLim [dB] 0.0 0.0 0.0 0.0 129.0 132.7</pre>	<pre>z=15848.932 a = 0.33dB HiLim [dB] 64.0 73.0 92.0 116.5 132.0 134.3</pre>	2Hz Class 1 Result [P/F] P P P P P P P
Test 1/3 Oct Uncertainty: Nominal f[Hz] 2939.370 5190.156 8422.543 12244.475 14125.375 14574.309 15011.951	<pre>ave Filter < 4dB = 0. Measured L[dB] 52.1 60.5 75.5 104.6 129.0 132.7 133.6</pre>	<pre>X= 12 fexact 09dB, 4-80dH LoLim [dB] 0.0 0.0 0.0 0.0 129.0 132.7 133.4</pre>	<pre>t=15848.932 a = 0.33dB HiLim [dB] 64.0 73.0 92.0 116.5 132.0 134.3 134.3</pre>	2Hz Class 1 Result [P/F] P P P P P P P P P
Test 1/3 Oct Uncertainty: Nominal f[Hz] 2939.370 5190.156 8422.543 12244.475 14125.375 14574.309 15011.951 15437.156	<pre>ave Filter < 4dB = 0. Measured L[dB] 52.1 60.5 75.5 104.6 129.0 132.7 133.6 133.7</pre>	<pre>X= 12 fexact 09dB, 4-80dH LoLim [dB] 0.0 0.0 0.0 0.0 129.0 132.7 133.4 133.6</pre>	<pre>t=15848.932 a = 0.33dB HiLim [dB] 64.0 73.0 92.0 116.5 132.0 134.3 134.3 134.3</pre>	2Hz Class 1 Result [P/F] P P P P P P P P P P
Test 1/3 Oct Uncertainty: Nominal f[Hz] 2939.370 5190.156 8422.543 12244.475 14125.375 14574.309 15011.951 15437.156 15848.932	<pre>ave Filter < 4dB = 0. Measured L[dB] 52.1 60.5 75.5 104.6 129.0 132.7 133.6 133.7 133.7</pre>	<pre>X= 12 fexact 09dB, 4-80dH LoLim [dB] 0.0 0.0 0.0 0.0 129.0 132.7 133.4 133.6 133.7</pre>	<pre>t=15848.932 a = 0.33dB HiLim [dB] 64.0 73.0 92.0 116.5 132.0 134.3 134.3 134.3 134.3</pre>	2Hz Class 1 Result [P/F] P P P P P P P P P P P
Test 1/3 Oct Uncertainty: Nominal f[Hz] 2939.370 5190.156 8422.543 12244.475 14125.375 14574.309 15011.951 15437.156 15848.932 16271.692	<pre>ave Filter < 4dB = 0. Measured L[dB] 52.1 60.5 75.5 104.6 129.0 132.7 133.6 133.7 133.7 133.6</pre>	<pre>X= 12 fexact 09dB, 4-80dH LoLim [dB] 0.0 0.0 0.0 129.0 132.7 133.4 133.6 133.7 133.6</pre>	<pre>t=15848.932 a = 0.33dB HiLim [dB] 64.0 73.0 92.0 116.5 132.0 134.3 134.3 134.3 134.3 134.3 134.3</pre>	2Hz Class 1 Result [P/F] P P P P P P P P P P P P P
Test 1/3 Oct Uncertainty: Nominal f[Hz] 2939.370 5190.156 8422.543 12244.475 14125.375 14574.309 15011.951 15437.156 15848.932 16271.692 16732.578	<pre>ave Filter < 4dB = 0. Measured L[dB] 52.1 60.5 75.5 104.6 129.0 132.7 133.6 133.7 133.7 133.6 133.7</pre>	<pre>X= 12 fexact 09dB, 4-80dH LoLim [dB] 0.0 0.0 0.0 129.0 132.7 133.4 133.6 133.7 133.6 133.4</pre>	<pre>t=15848.932 a = 0.33dB HiLim [dB] 64.0 73.0 92.0 116.5 132.0 134.3 134.3 134.3 134.3 134.3 134.3 134.3</pre>	2Hz Class 1 Result [P/F] P P P P P P P P P P P P P P P
Test 1/3 Oct Uncertainty: Nominal f[Hz] 2939.370 5190.156 8422.543 12244.475 14125.375 14574.309 15011.951 15437.156 15848.932 16271.692 16732.578 17235.030	<pre>ave Filter < 4dB = 0. Measured L[dB] 52.1 60.5 75.5 104.6 129.0 132.7 133.6 133.7 133.7 133.6 133.7 133.6</pre>	<pre>X= 12 fexact 09dB, 4-80dH LoLim [dB] 0.0 0.0 0.0 129.0 132.7 133.4 133.6 133.7 133.6 133.7 133.6 133.4 132.7</pre>	<pre>t=15848.932 a = 0.33dB HiLim [dB] 64.0 73.0 92.0 116.5 132.0 134.3 134.3 134.3 134.3 134.3 134.3 134.3 134.3 134.3 134.3 134.3</pre>	2Hz Class 1 Result [P/F] P P P P P P P P P P P P P P P P
Test 1/3 Oct Uncertainty: Nominal f[Hz] 2939.370 5190.156 8422.543 12244.475 14125.375 14574.309 15011.951 15437.156 15848.932 16271.692 16732.578 17235.030 17782.794	<pre>ave Filter < 4dB = 0. Measured L[dB] 52.1 60.5 75.5 104.6 129.0 132.7 133.6 133.7 133.6 133.7 133.6 133.7 133.6 133.7</pre>	<pre>X= 12 fexact 09dB, 4-80dH LoLim [dB] 0.0 0.0 0.0 129.0 132.7 133.4 133.6 133.7 133.6 133.7 133.6 133.4 132.7 129.0</pre>	<pre>t=15848.932 a = 0.33dB HiLim [dB] 64.0 73.0 92.0 116.5 132.0 134.3 132.0</pre>	2Hz Class 1 Result [P/F] P P P P P P P P P P P P P P P P P P P
Test 1/3 Oct Uncertainty: Nominal f[Hz] 2939.370 5190.156 8422.543 12244.475 14125.375 14574.309 15011.951 15437.156 15848.932 16271.692 16732.578 17235.030 17782.794 20514.447	<pre>ave Filter < 4dB = 0. Measured L[dB] 52.1 60.5 75.5 104.6 129.0 132.7 133.6 133.7 133.6 133.7 133.6 133.7 133.6 132.0 105.7</pre>	<pre>X= 12 fexact 09dB, 4-80dH LoLim [dB] 0.0 0.0 0.0 129.0 132.7 133.4 133.6 133.7 133.6 133.7 133.6 133.4 132.7 129.0 0.0</pre>	<pre>t=15848.932 a = 0.33dB HiLim [dB] 64.0 73.0 92.0 116.5 132.0 134.3</pre>	2Hz Class 1 Result [P/F] P P P P P P P P P P P P P P P P P P P
Test 1/3 Oct Uncertainty: Nominal f[Hz] 2939.370 5190.156 8422.543 12244.475 14125.375 14574.309 15011.951 15437.156 15848.932 16271.692 16732.578 17235.030 17782.794 20514.447 29823.373	<pre>ave Filter < 4dB = 0. Measured L[dB] 52.1 60.5 75.5 104.6 129.0 132.7 133.6 133.7 133.6 133.7 133.6 133.7 133.6 132.0 105.7 61.2</pre>	<pre>X= 12 fexact 09dB, 4-80dH LoLim [dB] 0.0 0.0 0.0 129.0 132.7 133.4 133.6 133.7 133.6 133.7 133.6 133.4 132.7 129.0 0.0 0.0</pre>	<pre>t=15848.932 a = 0.33dB HiLim [dB] 64.0 73.0 92.0 116.5 132.0 134.3 134.3 134.3 134.3 134.3 134.3 134.3 134.3 134.3 134.3 134.3 132.0 116.5 92.0</pre>	2Hz Class 1 Result [P/F] P P P P P P P P P P P P P P P P P P P
Test 1/3 Oct Uncertainty: Nominal f[Hz] 2939.370 5190.156 8422.543 12244.475 14125.375 14574.309 15011.951 15437.156 15848.932 16271.692 16732.578 17235.030 17782.794 20514.447 29823.373 48397.124	<pre>ave Filter < 4dB = 0. Measured L[dB] 52.1 60.5 75.5 104.6 129.0 132.7 133.6 133.7 133.6 133.7 133.6 133.7 133.6 132.0 105.7 61.2 37.7</pre>	<pre>X= 12 fexact 09dB, 4-80dH LoLim [dB] 0.0 0.0 0.0 129.0 132.7 133.4 133.6 133.7 133.6 133.7 133.6 133.4 132.7 129.0 0.0 0.0 0.0 0.0</pre>	<pre>t=15848.932 a = 0.33dB HiLim [dB] 64.0 73.0 92.0 116.5 132.0 134.3 134.3 134.3 134.3 134.3 134.3 134.3 134.3 134.3 134.3 132.0 116.5 92.0 73.0</pre>	2Hz Class 1 Result [P/F] P P P P P P P P P P P P P P P P P P P
Test 1/3 Oct Uncertainty: Nominal f[Hz] 2939.370 5190.156 8422.543 12244.475 14125.375 14574.309 15011.951 15437.156 15848.932 16271.692 16732.578 17235.030 17782.794 20514.447 29823.373 48397.124 85456.627	<pre>ave Filter < 4dB = 0. Measured L[dB] 52.1 60.5 75.5 104.6 129.0 132.7 133.6 133.7 133.6 133.7 133.6 132.0 105.7 61.2 37.7 45.8</pre>	<pre>X= 12 fexact 09dB, 4-80dH LoLim [dB] 0.0 0.0 0.0 129.0 132.7 133.4 133.6 133.7 133.6 133.7 133.6 133.4 132.7 129.0 0.0 0.0 0.0 0.0 0.0</pre>	<pre>t=15848.932 a = 0.33dB HiLim [dB] 64.0 73.0 92.0 116.5 132.0 134.3 134.3 134.3 134.3 134.3 134.3 134.3 134.3 134.3 134.3 132.0 116.5 92.0 73.0 64.0</pre>	2Hz Class 1 Result [P/F] P P P P P P P P P P P P P P P P P P P

CERTIFICATE OF CALIBRATION

Certificate Number:	7715		NATA Accreditation No: 20688	
Customer:	Active Environmenta 2 Merchant Avenue,	l Solutions Thomastown, V	/IC 3074	
Test Object: Manufacturer: Model: Serial No: Class: Adapter Make: Adapter Model:	Calibrator Cirrus 515 81733 Class 1 None N/A			
Environmental Conditions: Reference Conditions: Measurement Conditions:	Pressure 101.325 kPa 101.474 kPa	Temperature 23.0 ℃ 24.7 ℃	Relative Humidity 50.0 % RH 49.1 % RH	
Measurement Results: 1: 2: 3: Result (Average): Expanded Uncertainty: Degree of Freedom: Coverage Factor: Level when received:	Level 94.22 dB 94.22 dB 94.19 dB 94.21 dB 0.11 dB >100 2.00 94.57	Frequency 1000.31 Hz 1000.32 Hz 1000.36 Hz 1000.33 Hz 1.00033 Hz >100 2.00	THD + Noise 2.42 % 2.41 % 2.42 % 2.42 % 0.3 % >100 2.00	

The stated level is relative to 20μ Pa and is valid at measurement conditions. Tested when received – level adjustment of -0.36 dB required to comply with tolerances in IEC 60942.

Accredited for Compliance with ISO/IEC 17025 - Calibration

The results of the tests, calibrations and/or measurements included in this document are traceable to the International System of Units (SI) via International and Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

Date of Calibration: Date of Issue: Authorised Signatory: 28/02/2024 28/02/2024

lane dechenden

Claire Richardson

Certificate Number : 7715

NATA Accreditation No: 20688

Calibration and Verification Performed

The performed tests refer to sections 5.3, 5.4 and 5.6 in IEC 60942 (2017): Electro-acoustics - Sound Calibrators. The calibrator has been tested as described in Annex B of the same standard.

Conformity

For all tests, the expanded uncertainty of measurement is reported at approximately 95% confidence level with a coverage factor k, of 2 calculated in accordance with the principles stated in *JCGM 100:2008 – Evaluation of Measurement Data – Guide to the Expression of Uncertainty in Measurement.*

Except where noted otherwise, the results provided in this report are associated with the following expanded uncertainties:

0.11 dB for Sound Level at nominal frequencies of 250 Hz and 1 kHz 0.1 % for Frequency 0.3 % for Distortion

Instruments and Program

A complete list of instruments, hardware and software, that has been used for this calibration is separately available from the calibration laboratory.

Version of Calibration Software Used: CalCal-CT-6.1.2.9 13-Sep-2022 Certificate Version: 4.6.8

Traceability

The measured values are traceable to the following laboratories: Sound Pressure Level: National Measurement Institute, Australia Voltage: TR Calibration, Australia Frequency: TR Calibration, Australia THD and Noise: TR Calibration, Australia Ambient Pressure: IPAC Solutions, Australia Temperature: IPAC Solutions, Australia Relative Humidity: IPAC Solutions, Australia

Scope of Calibration Certificate

This certificate only relates to the test object calibrated. This certificate shall only be reproduced in full with the permission of Calibre Technology.

